Skip to main content

Advertisement

Log in

AKT-mediated regulation of polarization in differentiated human neutrophil-like HL-60 cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Neutrophil polarization is critical for the inflammatory response. AKT is a serine/threonine protein kinase and has been implicated in cell migration. However, it is not completely clear whether AKT affects neutrophil polarization. In this study, we tested the hypothesis that AKT regulates the polarization of neutrophil-like differentiated HL-60 cells (dHL-60) in response to fMLP.

Methods

HL-60 cells were differentiated into dHL-60 by incubation in medium containing 1.3 % DMSO for up to 6 days. Polarization of dHL-60 cells and primary human neutrophils were measured by Zigmond chamber. Phospho-Akt was analyzed by immunofluorescence and Western blot analysis. F-actin polymerization was detected by Rhodamine-Phalloidine staining. Rac2 activation was evaluated using GST Pull-down assay.

Results

We found that changes in the rate of cell polarization were consistent with the changes in AKT phosphorylation levels during HL-60 cell differentiation in response to fMLP. Moreover, cell polarization and AKT phosphorylation were reduced in fMLP-stimulated dHL-60 cells pretreated with the PI3 kinase inhibitors or the AKT inhibitors, which was confirmed in the primary human neutrophils. The AKT inhibitors altered fMLP-induced F-actin polymerization. Rac2 GTPases was also decreased by the AKT inhibitors in fMLP-stimulated dHL-60 cells.

Conclusion

This study demonstrates that AKT activation plays a crucial role in dHL-60 cell polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dHL-60:

Differentiated HL-60

DMSO:

Dimethylsulfoxide

fMLP:

N-Formyl-Met-Leu-Phe

PBS:

Phosphate-buffered saline

PH domain:

Pleckstrin homology domain

PI3K:

Phosphoinositide 3-kinase

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

TORC2:

Target of rapamycin complex 2

References

  1. Inoue T, Meyer T. Synthetic activation of endogenous PI3K and Rac identifies an AND-gate switch for cell polarization and migration. PLoS ONE. 2008;3:e3068.

    Article  PubMed  Google Scholar 

  2. Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol. 2006;174:647–52.

    Article  PubMed  CAS  Google Scholar 

  3. Niggli V. Signaling to migration in neutrophils: importance of localized pathways. Int J biochem Cell Biol. 2003;35:1619–38.

    Article  PubMed  CAS  Google Scholar 

  4. Onishi K, Higuchi M, Asakura T, Masuyama N, Gotoh Y. The PI3K-Akt pathway promotes microtubule stabilization in migrating fibroblasts. Genes Cells. 2007;12:535–46.

    Article  PubMed  CAS  Google Scholar 

  5. Chodniewicz D, Zhelev DV. Novel pathways of F-actin polymerization in the human neutrophil. Blood. 2003;102:2251–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sai J, Raman D, Liu Y, Wikswo J, Richmond A. Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis. J Biol Chem. 2008;283:26538–47.

    Article  PubMed  CAS  Google Scholar 

  7. Hauert AB, Martinelli S, Marone C, Niggli V. Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell Biol. 2002;34:838–54.

    Article  PubMed  CAS  Google Scholar 

  8. Burelout C, Naccache PH, Bourgoin SG. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils–effect of prostaglandin E2. J Leukoc Biol. 2007;81:1523–34.

    Article  PubMed  CAS  Google Scholar 

  9. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochim Biophys Acta. 2004;1697:3–16.

    Article  PubMed  CAS  Google Scholar 

  10. Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546:108–12.

    Article  PubMed  CAS  Google Scholar 

  11. Ananthanarayanan B, Ni Q, Zhang J. Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. Proc Nat Acad Sci USA. 2005;102:15081–6.

    Article  PubMed  CAS  Google Scholar 

  12. Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol. 2006;85:873–95.

    Article  PubMed  CAS  Google Scholar 

  13. Kolsch V, Charest PG, Firtel RA. The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci. 2008;121:551–9.

    Article  PubMed  CAS  Google Scholar 

  14. Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, et al. Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics. 2007;6:114–24.

    PubMed  CAS  Google Scholar 

  15. Lee S, Comer FI, Sasaki A, McLeod IX, Duong Y, Okumura K, et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell. 2005;16:4572–83.

    Article  PubMed  CAS  Google Scholar 

  16. Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang CK. Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A. 2002;99:3603–8.

    Article  PubMed  CAS  Google Scholar 

  17. Heit B, Tavener S, Raharjo E, Kubes P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol. 2002;159:91–102.

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Tang H, Hay N, Xu J, Ye RD. Akt isoforms differentially regulate neutrophil functions. Blood. 2010;115:4237–46.

    Article  PubMed  CAS  Google Scholar 

  19. Di Lorenzo A, Fernandez-Hernando C, Cirino G, Sessa WC. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci USA. 2009;106:14552–7.

    Article  PubMed  Google Scholar 

  20. Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 2004;29:233–42.

    Article  PubMed  CAS  Google Scholar 

  21. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992;70:401–10.

    Article  PubMed  CAS  Google Scholar 

  22. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81:53–62.

    Article  PubMed  CAS  Google Scholar 

  23. Yamauchi A, Kim C, Li S, Marchal CC, Towe J, Atkinson SJ, et al. Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles. J Immunol. 2004;173:5971–9.

    PubMed  CAS  Google Scholar 

  24. Nauseef WM. Isolation of human neutrophils from venous blood. Methods Mol Biol. 2007;412:15–20.

    Article  PubMed  Google Scholar 

  25. Heit B, Liu L, Colarusso P, Puri KD, Kubes P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci. 2008;121:205–14.

    Article  PubMed  CAS  Google Scholar 

  26. McKay DA, Kusel JR, Wilkinson PC. Studies of chemotactic factor-induced polarity in human neutrophils. Lipid mobility, receptor distribution and the time-sequence of polarization. J Cell Sci. 1991;100(Pt 3):473–9.

    PubMed  CAS  Google Scholar 

  27. Zhao D, Meng X, Cai C, Yuan C, Zou F. Temperature pretreatment alters the polarization response of human neutrophils to the chemoattractant N-formyl-Met-Leu-Phe. Inflammation. 2009;32:47–56.

    Article  PubMed  Google Scholar 

  28. Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol. 2004;14:R1014–27.

    Article  PubMed  CAS  Google Scholar 

  29. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell. 2003;114:201–14.

    Article  PubMed  CAS  Google Scholar 

  30. Lehmann DM, Seneviratne AM, Smrcka AV. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol. 2008;73:410–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lehman JA, Paul CC, Baumann MA, Gomez-Cambronero J. MAP kinase upregulation after hematopoietic differentiation: role of chemotaxis. Am J Physiol Cell Physiol. 2001;280:C183–91.

    PubMed  CAS  Google Scholar 

  32. Schymeinsky J, Then C, Walzog B. The non-receptor tyrosine kinase Syk regulates lamellipodium formation and site-directed migration of human leukocytes. J Cell Physiol. 2005;204:614–22.

    Article  PubMed  CAS  Google Scholar 

  33. Servant G, Weiner OD, Neptune ER, Sedat JW, Bourne HR. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell. 1999;10:1163–78.

    PubMed  CAS  Google Scholar 

  34. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 2000;287:1037–40.

    Article  PubMed  CAS  Google Scholar 

  35. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol. 2003;160:375–85.

    Article  PubMed  CAS  Google Scholar 

  36. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965–1014.

    Article  PubMed  CAS  Google Scholar 

  37. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 1998;335(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  38. Liao Y, Hung MC. Physiological regulation of Akt activity and stability. Am J Transl Res; 2:19-42.

  39. Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol. 2003;170:2647–54.

    PubMed  CAS  Google Scholar 

  40. Boulven I, Levasseur S, Marois S, Pare G, Rollet-Labelle E, Naccache PH. Class IA phosphatidylinositide 3-kinases, rather than p110 gamma, regulate formyl-methionyl-leucyl-phenylalanine-stimulated chemotaxis and superoxide production in differentiated neutrophil-like PLB-985 cells. J Immunol. 2006;176:7621–7.

    PubMed  CAS  Google Scholar 

  41. Ferguson GJ, Milne L, Kulkarni S, Sasaki T, Walker S, Andrews S, et al. PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis. Nat Cell Biol. 2007;9:86–91.

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki AT, Firtel RA. Finding the way: directional sensing and cell polarization through Ras signalling. Novartis Foundation symposium 2005; 269:73–87 (discussion 87–91, 223–30).

  43. Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol. 2007;9:36–44.

    Article  PubMed  CAS  Google Scholar 

  44. Keizer-Gunnink I, Kortholt A, Van Haastert PJ. Chemoattractants and chemorepellents act by inducing opposite polarity in phospholipase C and PI3-kinase signaling. J Cell Biol. 2007;177:579–85.

    Article  PubMed  CAS  Google Scholar 

  45. Takahama S, Hirose T, Ohno S. aPKC restricts the basolateral determinant PtdIns(3,4,5)P3 to the basal region. Biochem Biophys Res Commun. 2008;368:249–55.

    Article  PubMed  CAS  Google Scholar 

  46. Hannigan MO, Huang CK, Wu DQ. Roles of PI3K in neutrophil function. Curr Top Microbiol Immunol. 2004;282:165–75.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang H, Sun C, Glogauer M, Bokoch GM. Human neutrophils coordinate chemotaxis by differential activation of Rac1 and Rac2. J Immunol. 2009;183:2718–28.

    Article  PubMed  CAS  Google Scholar 

  48. Sun CX, Magalhaes MA, Glogauer M. Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol. 2007;179:239–45.

    Article  PubMed  CAS  Google Scholar 

  49. Carstanjen D, Yamauchi A, Koornneef A, Zang H, Filippi MD, Harris C, et al. Rac2 regulates neutrophil chemotaxis, superoxide production, and myeloid colony formation through multiple distinct effector pathways. J Immunol. 2005;174:4613–20.

    PubMed  CAS  Google Scholar 

  50. Filippi MD, Harris CE, Meller J, Gu Y, Zheng Y, Williams DA. Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat Immunol. 2004;5:744–51.

    Article  PubMed  CAS  Google Scholar 

  51. Chun KH, Kosmeder JW 2nd, Sun S, Pezzuto JM, Lotan R, Hong WK, et al. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst. 2003;95:291–302.

    Article  PubMed  CAS  Google Scholar 

  52. Franca-Koh J, Kamimura Y, Devreotes PN. Leading-edge research: PtdIns(3,4,5)P3 and directed migration. Nat Cell Biol. 2007;9:15–7.

    Article  PubMed  CAS  Google Scholar 

  53. Genot EM, Arrieumerlou C, Ku G, Burgering BM, Weiss A, Kramer IM. The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositide 3-kinase. Mol Cell Biol. 2000;20:5469–78.

    Article  PubMed  CAS  Google Scholar 

  54. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, et al. Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science. 2009;324:384–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Basic Research Program of China, No. 2012CB518200 (FZ) and No. 2012CB525004 (XM), National Natural Science Foundation of China No. 30971193 (FZ), No. 30800438 (XM) and No. 81071611 (CC).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zou.

Additional information

Responsible Editor: Liwu Li.

W. Zou, X. Chu and C. Cai equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Chu, X., Cai, C. et al. AKT-mediated regulation of polarization in differentiated human neutrophil-like HL-60 cells. Inflamm. Res. 61, 853–862 (2012). https://doi.org/10.1007/s00011-012-0478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0478-y

Keywords

Navigation