Skip to main content
Log in

Behaviour at infinity of solutions of some linear functional equations in normed spaces

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let \({\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, I = (d, \infty), \phi : I \to I}\) be unbounded continuous and increasing, X be a normed space over \({\mathbb{K}, \mathcal{F} : = \{f \in X^I : {\rm lim}_{t \to \infty} f(t) {\rm exists} \, {\rm in} X\},\hat{a} \in \mathbb{K}, \mathcal{A}(\hat{a}) : = \{\alpha \in \mathbb{K}^I : {\rm lim}_{t \to \infty} \alpha(t) = \hat{a}\},}\) and \({\mathcal{X} : = \{x \in X^I : {\rm lim} \, {\rm sup}_{t \to \infty} \|x(t)\| < \infty\}}\). We prove that the limit lim t → ∞ x(t) exists for every \({f \in \mathcal{F}, \alpha \in \mathcal{A}(\hat{a})}\) and every solution \({x \in \mathcal{X}}\) of the functional equation

$$x(\phi(t)) = \alpha(t) x(t) + f(t)$$

if and only if \({|\hat{a}| \neq 1}\). Using this result we study behaviour of bounded at infinity solutions of the functional equation

$$x(\phi^{[k]}(t)) = \sum_{j=0}^{k-1} \alpha_j(t) x (\phi^{[j]}(t)) + f(t),$$

under some conditions posed on functions \({\alpha_j(t), j = 0, 1,\ldots, k - 1,\phi}\) and f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brzdęk J., Popa D., Xu B.: Hyers-Ulam stability for linear equations of higher order. Acta Math. Hungarica. 120, 1–8 (2008)

    Article  MATH  Google Scholar 

  2. Brzdęk J., Popa D., Xu B.: Remarks on stability of linear recurrence of higher order. Appl. Math. Lett. 231, 459–1463 (2010)

    Google Scholar 

  3. Brzdęk J., Popa D., Xu B.: On nonstability of the linear recurrence of order one. J. Math. Anal. Appl. 367, 146–153 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brzdęk J., Popa D., Xu B.: Note on nonstability of the linear functional equation of higher order. Comput. Math. Appl. 62, 2648–2657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzdęk, J., Popa, D., Xu, B.: Remarks on stability of the linear functional equation in single variable. In: Pardalos, P., Srivastava, H.M., Georgiev, p. (eds.) Nonlinear analysis: stability, approximation, and inequalities, vol. 68, pp. 91–119 (Springer Opt. Appl.). Springer, New York (2012)

  6. Brzdęk J., Popa D., Xu B.: A note on stability of the linear functional equation of higher order and fixed points of an operator. Fixed Point Theory 13(2), 347–356 (2012)

    MATH  MathSciNet  Google Scholar 

  7. Cucker F., Corbalan A.G.: An alternate proof of the continuity of the roots of a polynomial. Amer. Math. Monthly. 96, 342–345 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, v. I: elementary theory. Am. Math. Soc., Providence, RI (reprint of the 1983 original) (1997)

  9. Kuczma M.: Functional equations in a single variable. Państwowe Wydawnictwo Naukowe, Warszawa (1968)

    MATH  Google Scholar 

  10. Kuczma M.: An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality. Birkhäuser Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  11. Kuczma M., Choczewski B., Ger R.: Iterative functional equations. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  12. Papaschinopoulos G., Stefanidou G.: Asymptotic behavior of the solutions of a class of rational difference equations. Inter. J. Differ. Equ. 5(2), 233–249 (2010)

    MathSciNet  Google Scholar 

  13. Stević S.: A generalization of the Copson’s theorem concerning sequences which satisfy a linear inequality. Indian J. Math. 43(3), 277–282 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Stević S.: Asymptotic behavior of solutions of a nonlinear difference equation with a continuous argument. Ukr. Math. J. 56(8), 1300–1307 (2004)

    Article  Google Scholar 

  15. Stević S.: More on a rational recurrence relation. Appl. Math. E-Notes 4, 80–85 (2004)

    MathSciNet  Google Scholar 

  16. Stević, S.: A short proof of the Cushing-Henson conjecture. Discrete Dyn. Nat. Soc. 2006, 5 (Article ID 37264) (2006)

  17. Stević S.: Bounded solutions of a class of difference equations in Banach spaces producing controlled chaos. Chaos Solitons Fractals 35(2), 238–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stević S.: On a system of difference equations. Appl. Math. Comput. 218, 3372–3378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stević S.: On a system of difference equations with period two coefficients. Appl. Math. Comput. 218, 4317–4324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stević S.: On the difference equation x n  = x n-2/(b n  + c n x n-1 x n-2). Appl. Math. Comput. 218, 4507–4513 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stević S.: On a third-order system of difference equations. Appl. Math. Comput. 218, 7649–7654 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stević S.: On some linear difference equations and inequalities with continuous argument. Appl. Math. Comput. 218, 9831–9838 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stević S.: On some solvable systems of difference equations. Appl. Math. Comput. 218, 5010–5018 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stević S.: On the difference equation x n  = x n-k /(b + cx n-1 ... x n-k ). Appl. Math. Comput. 218, 6291–6296 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stević S.: Behaviour of solutions of some linear functional equations at infinity. Appl. Math. Comput. 219, 6134–6141 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevo Stević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzdęk, J., Stević, S. Behaviour at infinity of solutions of some linear functional equations in normed spaces. Aequat. Math. 87, 379–389 (2014). https://doi.org/10.1007/s00010-013-0194-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-013-0194-x

Mathematics Subject Classification (2010)

Keywords

Navigation