Skip to main content
Log in

Degenerate Fractional Kirchhoff-Type System with Magnetic Fields and Upper Critical Growth

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the following degenerate fractional Kirchhoff-type system with magnetic fields and critical growth:

$$\begin{aligned} \left\{ \begin{array}{lll} -\mathfrak {M}(\Vert u\Vert _{s,A}^2)[(-\Delta )^s_Au+u] = G_u(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal {I}_\mu *|u|^{p^*}\right) |u|^{p^*-2}u \ &{}\text{ in }\,\,\mathbb {R}^N,\\ \mathfrak {M}(\Vert v\Vert _{s,A})[(-\Delta )^s_Av+v] = G_v(|x|,|u|^2,|v|^2) \\ \quad +\left( \mathcal {I}_\mu *|v|^{p^*}\right) |v|^{p^*-2}v \ &{}\text{ in }\,\,\mathbb {R}^N, \end{array}\right. \end{aligned}$$

where

$$\begin{aligned}\Vert u\Vert _{s,A}=\left( \iint _{\mathbb {R}^{2N}}\frac{|u(x)-e^{i(x-y)\cdot A(\frac{x+y}{2})}u(y)|^2}{|x-y|^{N+2s}}{\text {d}}x {\text {d}}y+\int _{\mathbb {R}^N}|u|^2{\text {d}}x\right) ^{1/2},\end{aligned}$$

and \((-\Delta )_{A}^s\) and A are called magnetic operator and magnetic potential, respectively, \(\mathfrak {M}:\mathbb {R}^{+}_{0}\rightarrow \mathbb {R}^{+}_0\) is a continuous Kirchhoff function, \(\mathcal {I}_\mu (x) = |x|^{N-\mu }\) with \(0<\mu <N\), \(C^1\)-function G satisfies some suitable conditions, and \(p^* =\frac{N+\mu }{N-2s}\). We prove the multiplicity results for this problem using the limit index theory. The novelty of our work is the appearance of convolution terms and critical nonlinearities. To overcome the difficulty caused by degenerate Kirchhoff function and critical nonlinearity, we introduce several analytical tools and the fractional version concentration-compactness principles which are useful tools for proving the compactness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, V.: Zero mass case for a fractional Berestycki–Lions-type problem. Adv. Nonlinear Anal. 7, 365–374 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benci, V.: On critical point theory for indefinite functionals in presence of symmetries. Trans. Am. Math. Soc. 274, 533–572 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassani, D., Zhang, J.: Choquard-type equations with Hardy–Littlewood–Sobolev upper critical growth. Adv. Nonlinear Anal. 8, 1184–1212 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM COCV 24, 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25(8), 1447–1476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhike’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Düzgün, F., Gamze, F., Iannizzotto, A.: Three nontrivial solutions for nonlinear fractional Laplacian equations. Adv. Nonlinear Anal. 7, 211–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, Y., Zhang, J.: Multiplicity of solutions for a class of elliptic systems with critical Sobolev exponent. Nonlinear Anal. 73, 2767–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiscella, A., Pucci, P., Zhang, B.: \(p\)-fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities. Adv. Nonlinear Anal. 8, 1111–1131 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furtado, M.F., de Oliveira, L.D., da Silva, J.P.: Multiple solutions for a critical Kirchhoff system. Appl. Math. Lett. 91, 97–105 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, F., da Silva, E.D., Yang, M., Zhou, J.: Existence of solutions for critical Choquard equations via the concentration compactness method. Proc. R. Soc. Edinb. Sect. A. https://doi.org/10.1017/prm.2018.131

  12. Huang, D., Li, Y.: Multiplicity of solutions for a noncooperative \(p\)-Laplacian elliptic system in \(\mathbb{R}^N\). J. Differ. Equ. 215, 206–223 (2005)

    Article  MATH  Google Scholar 

  13. Ji, C., Rădulescu, V.: Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation. Calc. Var. Partial Differ. Equ. 59, 28 (2020)

    Article  MATH  Google Scholar 

  14. Ji, C., Rădulescu, V.: Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2\). Manuscr. Math. 164, 509–542 (2021)

    Article  MATH  Google Scholar 

  15. Krawcewicz, W., Marzantowicz, W.: Some remarks on the Lusternik–Schnirelman method for non-differentiable functionals invariant with respect to a finite group action. Rocky Mt. J. Math. 20, 1041–1049 (1990)

    Article  MATH  Google Scholar 

  16. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ledesma, L., César, E.: Multiplicity result for non-homogeneous fractional Schrödinger-Kirchhoff-type equations in \(\mathbb{R}^N\). Adv. Nonlinear Anal. 7, 247–257 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y.: A limit index theory and its application. Nonlinear Anal. 25, 1371–1389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Ma, S., Zhang, G.: Solutions to upper critical fractional Choquard equations with potential. Adv. Differ. Equ. 25, 135–160 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Liang, S., Shi, S.: Multiplicity of solutions for the noncooperative \(p(x)\)-Laplacian operator elliptic system involving the critical growth. J. Dyn. Control Syst. 18, 379–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, S., Zhang, J.: Multiple solutions for noncooperative \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\) involving the critical exponent. J. Math. Anal. Appl. 403, 344–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, S., Molica Bisci, G., Zhang, B.: Multiple solutions for a noncooperative Kirchhoff-type system involving the fractional \(p\)-Laplacian and critical exponents. Math. Nachr. 291, 1553–1546 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Liang, S., Repovš, D.D., Zhang, B.: On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 75, 1778–1794 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang, S., Repovs̆, D.D., Zhang, B.: Fractional magnetic Schrödinger–Kirchhoff problems with convolution and critical nonlinearities. Math. Models Methods Appl. Sci. 43, 2473–2490 (2020)

  25. Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)

  26. Lions, P.L.: Symétrie et compacité dans les éspaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

    Article  MATH  Google Scholar 

  27. Lions, P.L.: The concentration compactness principle in the calculus of variations. The locally compact case. Part I and II, Ann. Inst. H. Poincaré Anal. Non. Lineaire. 1. pp. 109–145 and 223–283 (1984)

  28. Liu, J., Ji, C.: Concentration results for a magnetic Schrödinger–Poisson system with critical growth. Adv. Nonlinear Anal. 10, 775–798 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, P., Zhang, J.: Existence and multiplicity of solutions for fractional Choquard equations. Nonlinear Anal. 164, 100–117 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mingqi, X., Pucci, P., Squassina, M., Zhang, B.: Nonlocal Schr\(\ddot{\text{ o }}\)dinger–Kirchhoff equations with external magnetic field. Discrete Contin. Dyn. Syst. 37, 503–521 (2017)

    Google Scholar 

  31. Mingqi, X., Rădulescu, V., Zhang, B.: A critical fractional Choquard–Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21, 36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mingqi, X., Rădulescu, V., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 27 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  34. Mukherjee, T., Sreenadh, K.: Fractional Choquard equation with critical nonlinearities. Nonlinear Differ. Equ. Appl. NoDEA 24(6), 63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Papageorgiou, N., Rădulescu, V., Repovš, D.: Nonlinear Analysis—Theory and Methods. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  36. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie, Berlin (1954)

    Book  MATH  Google Scholar 

  37. Pucci, P., Xiang, M., Zhang, B.: Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Vari. 12, 253–275 (2019)

    Article  MATH  Google Scholar 

  38. Song, Y., Shi, S.: Infinitely many solutions for Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3223–3232 (2019)

  39. Song, Y., Shi, S.: Existence and multiplicity of solutions for Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity. Appl. Math. Lett. 92, 170–175 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, Y., Shi, S.: Multiple solutions for a class of noncooperative critical nonlocal system with variable exponents. Math. Models Methods Appl. Sci. 44, 6630–6646 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Squassina, M., Volzone, B.: Bourgain–Brézis–Mironescu formula for magnetic operators. C. R. Math. 354, 825–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, F., Xiang, M.: Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent. Electron. J. Diff. Equ. 2016, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäser, Boston/Basel/Berlin (1996)

    Google Scholar 

  44. Xia, A.: Multiplicity and concentration results for magnetic relativistic Schrödinger equations. Adv. Nonlinear Anal. 9, 1161–1186 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiang, M., Rădulescu, V., Zhang, B.: Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM COCV 24, 1249–1273 (2018)

    Article  MATH  Google Scholar 

  46. Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, X., Zhang, B., Repovš, D.D.: Existence and symmetry of solutions for critical fractional Schr\(\ddot{\text{ o }}\)dinger equations with bounded potentials. Nonlinear Anal. 142, 48–68 (2016)

    Article  MathSciNet  Google Scholar 

  48. Zhang, Y., Tang, X., Rădulescu, V.: Small perturbations for nonlinear Schrödinger equations with magnetic potential. Milan J. Math. 88, 479–506 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Shi was supported by NSFC grant (no. 11771177), China Automobile Industry Innovation and Development Joint Fund (no. U1664257), Program for Changbaishan Scholars of Jilin Province and Program for JLU Science, Technology Innovative Research Team (no. 2017TD-20). D.D. Repovš was supported by the Slovenian Research Agency (nos. P1-0292, N1-0114, N1-0083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan D. Repovš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Shi, S. & Repovš, D.D. Degenerate Fractional Kirchhoff-Type System with Magnetic Fields and Upper Critical Growth. Mediterr. J. Math. 19, 170 (2022). https://doi.org/10.1007/s00009-022-02076-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02076-5

Keywords

Mathematics Subject Classification

Navigation