Skip to main content
Log in

Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Peano and the Hilbert curves, denoted by P and H respectively, are historically the first and some of the best known space-filling curves. They have a fractal structure, many variants (as the well-known Moore curve M or a probably new “looped” version \({\overline{H}}\) of H), and a huge number of applications in the most diverse fields of mathematics and experimental sciences. In this paper, we employ a recently proposed computational system, allowing numerical calculations with infinite and infinitesimal numbers, to investigate the behavior of such curves and to highlight the differences with the classical treatment. In particular, we perform several types of computations and give many examples based not only on the curves H and P, but also on their d-dimensional versions \(H^d\) and \(P^d\), respectively. Following our approach, it is easy to apply this new computational methodology to many other geometrical contexts, with interesting advantages such as summarizing in a single (infinite) number, representing the final result of a sequence of computations, much information both on the geometrical meaning of such a sequence and on the base geometrical structure itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The basic proposition of elementary calculus often called necessary Cauchy condition for convergence states that “if \(\sum _n a_n\) converges, then \(\{a_n\}_n\) is infinitesimal”. But the word “infinitesimal” does not refer, obviously, to the elements \(a_n\) which are, in this case, ordinary real or complex numbers.

  2. Note that \(\displaystyle \frac{6^{\tiny \textcircled {{\tiny 1}}}}{4^{\tiny \textcircled {{\tiny 1}}}-1} = \left( \frac{3}{2}\right) ^{\tiny \!\!\textcircled {{\tiny 1}}} + \frac{\left( 3/2\right) ^{\tiny \textcircled {{\tiny 1}}}}{4^{\tiny \textcircled {{\tiny 1}}}-1}\).

  3. We give here some explanations. First of all, for any \(\varepsilon >0\) and \(P\in \mathbb {R}^2\) denote by \(D_{\varepsilon }(P)\) the open disc of radius \(\varepsilon \) centered at P. Consider, for instance, the curve \(M_N\), with N any number of \({\widehat{\mathbb {N}}}\), and a point \(P\in M_N\). Then note that \(M_N\cap D_{\varepsilon }(P)\subseteq L_h\cup L_v\), where \(L_h\) and \(L_v\) are two suitable lines of \(\mathbb {R}^2\) (\(L_h\) horizontal and \(L_v\) vertical, and one of them at least contains P).

  4. The interested reader can easily and in different ways give more formal and precise meanings to the term “approximation” used here; for instance, he could see [12, Definition 2.1] or simply start from the observation

    $$\begin{aligned} l\big (H^t_{N}\big )= l\big (P^d_{M}\big ) \quad \text{(up } \text{ to } \text{ infinitesimals) } \quad \ \Leftrightarrow \quad \ \frac{(t-1)N}{(d-1)M}=\log _23. \end{aligned}$$

References

  1. Alber, J., Niedermeier, R.: On multidimensional curves with Hilbert property. Theory Comput. Syst. 33, 295–312 (2000). https://doi.org/10.1007/s002240010003

    MathSciNet  MATH  Google Scholar 

  2. Alber, J., Niedermeier, R.: On Multi-dimensional Hilbert Indexings, vol. 1449. Spinger LNCS, Berlin (1998)

    MATH  Google Scholar 

  3. Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. In: Sergeyev, Y.D., Kvasov, D.E. (eds) Proceedings of the 3rd International Conference NUMTA 2019 - Numerical Computations: Theory and Algorithms. Cham: Springer LNCS 11973 (2020), pp. 329–342. https://doi.org/10.1007/978-3-030-39081-5_29

  4. Baeder, M.: Space-Filling Curves: An Introduction with Applications in Scientific Computing. Text in computational science and engineering, vol. 9. Springer, Heidelberg (2013)

    Google Scholar 

  5. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: Complex interactions in one-dimensional cellular automata and linguistic constructions. Appl. Math. Sci. 12(15), 691–721 (2018). https://doi.org/10.12988/ams.2018.8353

    Google Scholar 

  6. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. Int. J. Math. Educ. Sci. Technol. 50(1), 100–120 (2019). https://doi.org/10.1080/0020739X.2018.1478134

    Google Scholar 

  7. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P., Renteria Bustamante, L.: Emergence of Linguistic-like Structures in One-dimensional Cellular Automata. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds) AIP proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”. New York: AIP Publ. 090044 (2016). https://doi.org/10.1063/1.4965408

  8. Butz, A.R.: Alternative algorithm for Hilbert’s space filling curve. IEEE Trans. Comput. 20, 424–426 (1971)

    MATH  Google Scholar 

  9. Butz, A.R.: Convergence with Hilbert’s space filling curve. J. Comput. Syst. Sci. 3, 128–146 (1969)

    MathSciNet  MATH  Google Scholar 

  10. Butz, A.R.: Space filling curves and mathematical programming. Inf. Control 12(4), 314–330 (1968)

    MathSciNet  MATH  Google Scholar 

  11. Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    MATH  Google Scholar 

  12. Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026

    MathSciNet  Google Scholar 

  13. Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y.D., Kvasov, D.E. (eds) Proceedings of the 3rd International Conference “NUMTA 2019 - Numerical Computations: Theory and Algorithms”. Cham: Springer LNCS 11973, pp. 358–372 (2020). https://doi.org/10.1007/978-3-030-39081-5_31

  14. Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the \(Z\)-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019

    Google Scholar 

  15. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  16. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)

    MathSciNet  MATH  Google Scholar 

  17. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–82 (2012)

    MathSciNet  MATH  Google Scholar 

  18. De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–38 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Haverkort, H.: An inventory of three-dimensional Hilbert space-filling curves. arXiv: 1109.2323v2 (2016)

  20. Haverkort, H.: How many three-dimensional Hilbert curves are there? arXiv: 1610.00155v2 (2017)

  21. Haverkort, H., van Walderveen, F.: Four-dimensional Hilbert curves for R-trees. ACM J. Exp. Alg. 16, 34 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38(3), 459–460 (1891)

    MathSciNet  MATH  Google Scholar 

  23. Ingarozza, F., Adamo, M. T., Martino, M., Piscitelli, A.: A grossone-based numerical model for computations with infinity: a case study in an Italian high school. In: Sergeyev, Y.D., Kvasov, D.E. (eds) Proceedings of the 3rd International Conference on “NUMTA 2019 - Numerical Computations: Theory and Algorithms”. Cham: Springer LNCS 11973, pp. 451–462 (2020). https://doi.org/10.1007/978-3-030-39081-5_39

  24. Lawder, A. K.: Calculation of mappings between one and \(n\)-dimensional values using the Hilbert space-filling curve. Research report JL1/00, School of Computer Science and Information Systems, Birkbeck College, Univ. London (2000)

  25. Li, C., Feng, Y.: Algorithm for Analyzing \(N\)-Dimensional Hilbert Curve. LNCS 3739, 657–662 (2005)

    Google Scholar 

  26. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlin Sci. Numer. Simul. 21(1–3), 3–11 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Mazzia, F., Sergeyev, Y. D., Iavernaro, F., Amodio, P., Mukhametzhanov, M. S.: Numerical methods for solving ODEs on the Infinity Compute. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds) AIP Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”. New York: AIP Publ., 090033 (2016). https://doi.org/10.1063/1.4965397.

  28. Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Annaln. 36, 157–160 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Quinqueton, M.B.: A locally adaptive Peano scanning algorithm. IEEE Trans. PAMI 3, 403–412 (1981)

    MATH  Google Scholar 

  30. Rizza, D.: A study of mathematical determination through Bertrand’s paradox. Philos. Math. 26(3), 375–395 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Rizza, D.: Primi passi nell’aritmetica dell’infinito. Preprint (2019) (in Italian)

  32. Rizza, D.: Supertasks and numeral system. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds) AIP Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”. New York: AIP Publ. 090005 (2016). https://doi.org/10.1063/1.4965369.

  33. Sagan, H.: A three dimensional Hilbert curve. Int. J. Math. Educ. Sci. Technol. 24(4), 541–545 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    MATH  Google Scholar 

  35. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–96 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Sergeyev, Y.D.: Arithmetic of infinity. 2nd Electronic Ed. 2013. Cosenza: Edizioni Orizzonti Meridionali (2003)

  37. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos Solitons Fractals 33(1), 50–75 (2007)

    Google Scholar 

  38. Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds) Unconventional Computation and Natural Computation: Proceedings of the 14th International Conference UCNC 2015. New York: Springer, LNCS 9252, pp. 89–106 (2015)

  39. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinskinski’s carpet and volume of Menger’s sponge. Chaos Solitons Fractals 42(5), 3042–6 (2009)

    Google Scholar 

  40. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–85 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rend. Semin. Mat. Univ. Polit. Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  42. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the infinity Computer. Appl. Math. Comput. 219(22), 10668–81 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Sergeyev, Y.D.: The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Commun. Nonlinear Sci. Numer. Simul. 31, 21–29 (2016)

    MathSciNet  Google Scholar 

  45. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Mat. Cultura Soc. Riv. Unione Mat. Ital. 8(1), 111–47 (2015) (in Italian)

  46. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–76 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Sergeyev, Y.D., Garro, A.: Observability of Turing machines: a refinement of the theory of computation. Informatica 21(3), 425–54 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the Infinity Computer. Int. J. Unconvention. Comput. 12(1), 55–66 (2016)

    Google Scholar 

  49. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)

    MATH  Google Scholar 

  50. Spanier, E.H.: Algebraic Topology. 3rd corr. Print. Springer, New York (2012)

    Google Scholar 

  51. Young, W.H., Young, G.C.: The Theory of Sets of Points. 2nd Edition, 2013, Volume 259 of Chelsea Publishing Series, AMS (1972)

  52. Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218(16), 8064–76 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Zilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–36 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caldarola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the research project “I-BEST”, CUP B28I17000290008, PON “Innovazione e competitività” 2014/2020 MiSE Horizon 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoniotti, L., Caldarola, F. & Maiolo, M. Infinite Numerical Computing Applied to Hilbert’s, Peano’s, and Moore’s Curves . Mediterr. J. Math. 17, 99 (2020). https://doi.org/10.1007/s00009-020-01531-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01531-5

Keywords

Mathematics Subject Classification

Navigation