Skip to main content

Advertisement

Log in

Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Actor JK, Hwang SA, Kruzel ML (2009) Lactoferrin as a natural immune modulator. Curr Pharm Des 15:956–1973

    Article  Google Scholar 

  • Adams DO (1976) The granulomatous inflammatory response. A Review. Am J Pathol 84:164–192

    PubMed  PubMed Central  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  • Batard E, Jamme F, Villette S et al (2011) Diffusion of ofloxacin in the endocarditis vegetation assessed with synchrotron radiation UV fluorescence microspectroscopy. PLoS ONE 6:e19440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baveye S, Elass E, Fernig DG et al (2000) Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect Immun 68:6519–6525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrne ST, Denkin SM, Zhang Y (2007) Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J Antimicrob Chemother 59:313–316

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty SD, Zhu G, Tsai MC et al (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76:916–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi BK, Actor JK, Rios S et al (2008) Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 25:581–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crouch SP, Slater KJ, Fletcher J (1992) Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80:235–240

    Article  PubMed  CAS  Google Scholar 

  • Dartois V (2014) The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol 12:159–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Rosa G, Yang D, Tewary P et al (2008) Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J Immunol 180:6868–6876

    Article  PubMed  Google Scholar 

  • Debbabi H, Dubarry M, Rautureau M et al (1998) Bovine lactoferrin induces both mucosal and systemic immune response in mice. J Dairy Res 65:283–293

    Article  PubMed  CAS  Google Scholar 

  • Dhennin-Duthille I, Masson M, Damiens E et al (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Diem K, Magaret A, Klock A et al (2015) Image analysis for accurately counting CD4+ and CD8+ T cells in human tissue. J Virol Methods 222:117–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doursout MF, Horton H, Hoang L et al (2013) Lactoferrin moderates LPS-induced hypotensive response and gut injury in rats. Int Immunopharmacol 15:227–231

    Article  PubMed  CAS  Google Scholar 

  • Drago-Serrano ME, Campos-Rodriguez R, Carrero JC et al (2017) Lactoferrin: balancing ups and downs of inflammation due to microbial infections. Int J Mol Sci 18:501

    Article  PubMed Central  Google Scholar 

  • Driver ER, Ryan GJ, Hoff DR et al (2012) Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:3181–3195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisen DP, McBryde ES, Walduck A (2013) Low-dose aspirin and ibuprofen’s sterilizing effects on Mycobacterium tuberculosis suggest safe new adjuvant therapies for tuberculosis. J Infect Dis 208:1925–1927

    Article  PubMed  CAS  Google Scholar 

  • Estrella JL, Kan-Sutton C, Gong X et al (2011) A novel in vitro human macrophage model to study the persistence of mycobacterium tuberculosis using vitamin D(3) and retinoic acid activated THP-1 macrophages. Front Microbiol 2:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Ruiz M, Aguado JM (2018) Risk of infection associated with anti-TNF-alpha therapy. Expert Rev Anti Infect Ther 16:939–956

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Debbabi H, Dubarry M et al (2006) Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem Cell Biol 84:303–311

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Goldstein MM, Chan J et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    Article  PubMed  CAS  Google Scholar 

  • Frydecka I, Zimecki M, Bocko D et al (2002) Lactoferrin-induced up-regulation of zeta (zeta) chain expression in peripheral blood T lymphocytes from cervical cancer patients. Anticancer Res 22:1897–1901

    PubMed  CAS  Google Scholar 

  • Gupta A, Misra A, Deretic V (2016) Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis. Adv Drug Deliv Rev 102:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayford FEA, Dolman RC, Blaauw R et al (2020) The effects of anti-inflammatory agents as host-directed adjunct treatment of tuberculosis in humans: a systematic review and meta-analysis. Respir Res 21:223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MM, Norazmi MN (2013) Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection—the double-edged sword? Biomed Res Int 2013:179174

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Luo Q, Guo Y et al (2015) Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS ONE 10:e0129744

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter RL, Olsen MR, Jagannath C et al (2006a) Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci 36:371–386

    PubMed  CAS  Google Scholar 

  • Hunter RL, Venkataprasad N, Olsen MR (2006b) The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis 86:349–356

    Article  PubMed  CAS  Google Scholar 

  • Hunter RL, Actor JK, Hwang SA et al (2018) Pathogenesis and animal models of post-primary (bronchogenic) tuberculosis, a review. Pathogens 7:19

    Article  PubMed Central  Google Scholar 

  • Hwang SA, Actor JK (2009) Lactoferrin modulation of BCG-infected dendritic cell functions. Int Immunol 21:1185–1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang SA, Wilk KM, Bangale YA et al (2007) Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med Microbiol Immunol 196:171–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang SM, Kim DD, Chung SJ et al (2008) Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J Control Release 129:100–106

    Article  PubMed  CAS  Google Scholar 

  • Hwang SA, Arora R, Kruzel ML et al (2009a) Lactoferrin enhances efficacy of the BCG vaccine: comparison between two inbred mice strains (C57BL/6 and BALB/c). Tuberculosis 89(Suppl 1):S49-54

    Article  PubMed  Google Scholar 

  • Hwang SA, Kruzel ML, Actor JK (2009b) Influence of bovine lactoferrin on expression of presentation molecules on BCG-infected bone marrow derived macrophages. Biochimie 91:76–85

    Article  PubMed  CAS  Google Scholar 

  • Hwang SA, Wilk K, Kruzel ML et al (2009c) A novel recombinant human lactoferrin augments the BCG vaccine and protects alveolar integrity upon infection with Mycobacterium tuberculosis in mice. Vaccine 27:3026–3034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang SA, Welsh KJ, Boyd S et al (2011) Comparing efficacy of BCG/lactoferrin primary vaccination versus booster regimen. Tuberculosis 91(Suppl 1):S90-95

    Article  PubMed  CAS  Google Scholar 

  • Hwang SA, Kruzel ML, Actor JK (2015) Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function. Innate Immun 21:553–561

    Article  PubMed  CAS  Google Scholar 

  • Hwang SA, Kruzel ML, Actor JK (2016) Recombinant human lactoferrin modulates human PBMC derived macrophage responses to BCG and LPS. Tuberculosis 101S:S53–S62

    Article  PubMed  Google Scholar 

  • Hwang SA, Kruzel ML, Actor JK (2017) Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology. Biochem Cell Biol 95:148–154

    Article  PubMed  CAS  Google Scholar 

  • Hwang SA, Byerly CD, Actor JK (2019) Mycobacterial trehalose 6,6′-dimycolate induced vascular occlusion is accompanied by subendothelial inflammation. Tuberculosis 116S:S118–S122

    Article  PubMed  Google Scholar 

  • Kaplan G (2020) Tuberculosis control in crisis—causes and solutions. Prog Biophys Mol Biol 152:6–9

    Article  PubMed  Google Scholar 

  • Kaplan G, Post FA, Moreira AL et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71:7099–7108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keane J, Gershon S, Wise RP et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Khader SA, Rangel-Moreno J, Fountain JJ et al (2009) In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J Immunol 183:8004–8014

    Article  PubMed  CAS  Google Scholar 

  • Kruzel ML, Harari Y, Mailman D et al (2002) Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin Exp Immunol 130:25–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruzel ML, Zimecki M, Actor JK (2017) Lactoferrin in a context of inflammation-induced pathology. Front Immunol 8:1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruzel ML, Olszewska P, Pazdrak B et al (2021) New insights into the systemic effects of oral lactoferrin: transcriptome profiling. Biochem Cell Biol 99:47–53

    Article  PubMed  CAS  Google Scholar 

  • Kuhara T, Yamauchi K, Tamura Y et al (2006) Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J Interferon Cytokine Res 26:489–499

    Article  PubMed  CAS  Google Scholar 

  • Legrand D (2012) Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol 90:252–268

    Article  PubMed  CAS  Google Scholar 

  • Lv S, Han M, Yi R et al (2014) Anti-TNF-alpha therapy for patients with sepsis: a systematic meta-analysis. Int J Clin Pract 68:520–528

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Manzoni P, Rinaldi M, Cattani S et al (2009) Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Marino S, Cilfone NA, Mattila JT et al (2015) Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 83:324–338

    Article  PubMed  Google Scholar 

  • Martin CJ, Carey AF, Fortune SM (2016) A bug’s life in the granuloma. Semin Immunopathol 38:213–220

    Article  PubMed  CAS  Google Scholar 

  • McClean CM, Tobin DM (2016) Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 74:ftw068

    Article  PubMed  PubMed Central  Google Scholar 

  • McQuin C, Goodman A, Chernyshev V et al (2018) Cell Profiler 3.0: next-generation image processing for biology. PLoS Biol 16:e2005970

    Article  PubMed  PubMed Central  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  PubMed  CAS  Google Scholar 

  • Monin L, Khader SA (2014) Chemokines in tuberculosis: the good, the bad and the ugly. Semin Immunol 26:552–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ndlovu H, Marakalala MJ (2016) Granulomas and inflammation: host-directed therapies for tuberculosis. Front Immunol 7:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen TKT, d’Aigle J, Chinea L et al (2020) Mycobacterial trehalose 6,6′-dimycolate-induced M1-type inflammation. Am J Pathol 190:286–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen TKT, Niaz Z, d’Aigle J et al (2021) Lactoferrin reduces mycobacterial M1-type inflammation induced with trehalose 6,6′-dimycolate and facilitates the entry of fluoroquinolone into granulomas. Biochem Cell Biol 99:73–80

    Article  PubMed  CAS  Google Scholar 

  • Ochoa TJ, Pezo A, Cruz K et al (2012) Clinical studies of lactoferrin in children. Biochem Cell Biol 90:457–467

    Article  PubMed  CAS  Google Scholar 

  • Page MJ, Bester J, Pretorius E (2018) The inflammatory effects of TNF-alpha and complement component 3 on coagulation. Sci Rep 8:1812

    Article  PubMed  PubMed Central  Google Scholar 

  • Paige C, Bishai WR (2010) Penitentiary or penthouse condo: the tuberculous granuloma from the microbe’s point of view. Cell Microbiol 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Pisu D, Huang L, Grenier JK et al (2020a) Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically distinct host–pathogen interactions. Cell Rep 30:335-350.e334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pisu D, Huang L, Rin BN et al (2020b) Dual RNA-sequencing of Mycobacterium tuberculosis-infected cells from a murine infection model. STAR Protoc 1:100123

    Article  PubMed  PubMed Central  Google Scholar 

  • Plessner HL, Lin PL, Kohno T et al (2007) Neutralization of tumor necrosis factor (TNF) by antibody but not TNF receptor fusion molecule exacerbates chronic murine tuberculosis. J Infect Dis 195:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Rascon-Cruz Q, Espinoza-Sanchez EA, Siqueiros-Cendon TS et al (2021) Lactoferrin: a glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules 26:205

    Article  PubMed Central  CAS  Google Scholar 

  • Rosa L, Cutone A, Lepanto MS et al (2017) Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. Int J Mol Sci 18:1985

    Article  PubMed Central  Google Scholar 

  • Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5:39–47

    Article  PubMed  CAS  Google Scholar 

  • Schito M, Migliori GB, Fletcher HA et al (2015) Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin Infect Dis 61(Suppl 3):S102-118

    Article  PubMed Central  CAS  Google Scholar 

  • Schmitz N, Kurrer M, Bachmann MF et al (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79:6441–6448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sfeir RM, Dubarry M, Boyaka PN et al (2004) The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr 134:403–409

    Article  PubMed  CAS  Google Scholar 

  • Sienkiewicz M, Jaskiewicz A, Tarasiuk A et al (2021) Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1895063

    Article  PubMed  Google Scholar 

  • Skerry C, Harper J, Klunk M et al (2012) Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS ONE 7:e39680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotgiu G, Centis R, D’Ambrosio L et al (2015) Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 5:a017822

    Article  PubMed  PubMed Central  Google Scholar 

  • Spadaro M, Montone M, Arigoni M et al (2014) Recombinant human lactoferrin induces human and mouse dendritic cell maturation via Toll-like receptors 2 and 4. FASEB J 28:416–429

    Article  PubMed  CAS  Google Scholar 

  • Takakura N, Wakabayashi H, Yamauchi K et al (2006) Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 84:363–368

    Article  PubMed  CAS  Google Scholar 

  • Thiriot JD, Martinez-Martinez YB, Endsley JJ et al (2020) Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 78:ftaa009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turin CG, Zea-Vera A, Pezo A et al (2014) Lactoferrin for prevention of neonatal sepsis. Biometals 27:1007–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilaplana C, Marzo E, Tapia G et al (2013) Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis 208:199–202

    Article  PubMed  CAS  Google Scholar 

  • Wallis RS, Broder MS, Wong JY et al (2004) Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 38:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol 5:614

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh KJ, Abbott AN, Hwang SA et al (2008) A role for tumour necrosis factor-alpha, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6′-dimycolate induced granulomatous response. Microbiology 154(Pt 6):1813–1824

    Article  PubMed  CAS  Google Scholar 

  • Welsh KJ, Hwang SA, Hunter RL et al (2010) Lactoferrin modulation of mycobacterial cord factor trehalose 6–6′-dimycolate induced granulomatous response. Transl Res 156:207–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsh KJ, Hwang SA, Boyd S et al (2011) Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis 91:S105–S113

    Article  PubMed  CAS  Google Scholar 

  • Wisgrill L, Wessely I, Spittler A et al (2018) Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages. Clin Exp Immunol 192:315–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (2020) Global tuberculosis report 2020. World Health Organization, Geneva

    Google Scholar 

  • Yeom M, Park J, Lee B et al (2011) Lactoferrin inhibits the inflammatory and angiogenic activation of bovine aortic endothelial cells. Inflamm Res 60:475–482

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Xi X, Wang C et al (2018) Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: a systematic review and meta-analysis. PLoS ONE 13:e0201025

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shi N, Diao Z et al (2021) Therapeutic potential of TNFalpha inhibitors in chronic inflammatory disorders: past and future. Genes Dis 8:38–47

    Article  PubMed  CAS  Google Scholar 

  • Zimecki M, Mazurier J, Machnicki M et al (1991) Immunostimulatory activity of lactotransferrin and maturation of CD4- CD8− murine thymocytes. Immunol Lett 30:119–123

    Article  PubMed  CAS  Google Scholar 

  • Zimecki M, Miedzybrodzki R, Mazurier J et al (1999) Regulatory effects of lactoferrin and lipopolysaccharide on LFA-1 expression on human peripheral blood mononuclear cells. Arch Immunol Ther Exp 47:257–264

    CAS  Google Scholar 

Download references

Acknowledgements

This work was given in part at the 14th International Conference on Lactoferrin Structure, Function and Applications, held in Lima, Peru (2019). This research was performed in part to fulfill requirements for the MS degree from The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences; located within the University of Texas Medical Center in Houston, Texas 77030. We thank Gustavo Ayala, MD, for use of the Nuance Cri Multispectral Imaging System FX. This project was supported in part by NIH Grant 1R42-AI117990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey K. Actor.

Ethics declarations

Conflict of Interest

The author(s) declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

5_2022_648_MOESM1_ESM.pptx

Supplementary file1 Fig. S.1 Lactoferrin treatment reduces pulmonary inflammation post infectious challenge with Mtb in a dose dependent response. Lungs from Mtb-infected mice were assessed at day 28 post aerosol infection (A) and compared to animals given bovine LF in the prophylactic group (B, C) or therapeutic group (D, E). Histologic assessment revealed primary granulomatous response with monocytic cell infiltration, dense cellular foci, and occluded vascular regions in control infected mice. Both prophylactic and therapeutic rHLF treatment reduced inflammatory response resulting in modest inflammatory foci and reduced pathological damage to lung tissue. While both doses (100 μg and 1 mg levels) were productive in limiting focal inflammation, the higher dose was more consistent between treatment groups. Hematoxylin and eosin-stained histographs represent formalin-fixed lung sections at 10× magnification obtained with 8–10 mice in each group; study representative of repeat experiments. Fig. S.2. Mycobacterial burden in lactoferrin-treated mice. C57Bl/6 mice were aerosol challenged with Mtb, strain Erdman, and treated with bovine lactoferrin (bLF) given as 100 μg or as 1 mg dose administered every other day orally beginning on day 14 (prophylactic treatment), or beginning on day 21 (therapeutic treatment) post infection. Lung (A), spleen (B) and liver (C) were removed on day 28 post infection; tissues were assessed for bacterial CFUs confirmed by plating serial dilutions on Middlebrook 7H11 agar plates using the large right lobe of the mouse lung that was weighed and homogenized into 2 mL PBS, which were subsequently incubated at 37°C for 3–4 weeks and represented as CFU burden per organ. Data are presented as individual mice with the mean and SEM indicated, n ≥ 6 mice per group. Fig. S.3. CellProfiler analysis of ofloxacin in histological sections. Example analysis is presented for pulmonary sections taken at 8 weeks post infection with MTB alone (A) or with lactoferrin treatment beginning at day 14 through day 28 (B). Each scanned section was assessed according to threshold parameters indicated. Counter-clockwise from top left shows (1) 100× histological scanned image; (2) single color outline of penetrating fluorescence; (3), color coding of ofloxacin signal detected (minus background), and (4) CellProfiler program threshold parameters Program parameters assume multiple objects in the image; colors indicate non-continuous regions of fluorescence highlighting separation of detected fluor to regions of intracellular accumulation (PPTX 1375 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.K.T., Niaz, Z., Kruzel, M.L. et al. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch. Immunol. Ther. Exp. 70, 9 (2022). https://doi.org/10.1007/s00005-022-00648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-022-00648-7

Keywords

Navigation