Skip to main content

Advertisement

Log in

Modulatory Effect of the Euro-Lupus Low-Dose Intravenous Cyclophosphamide Regimen on Circulating Immune Cells in Systemic Lupus Erythematosus

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

A Euro-Lupus regimen of low-dose intravenous cyclophosphamide (CFA) is commonly used to treat severe organ manifestations of systemic lupus erythematosus (SLE), particularly lupus nephritis (LN). There are no data on the distributions and dynamics of immune cell populations in patients with various treatment outcomes. The circulating immune cells of 11 female SLE patients were assessed before and after Euro-Lupus regimen (cumulative dose of 3000 mg CFA) by flow cytometry together with those of 16 healthy women. A subanalysis was performed in LN patients who achieved complete remission (CR; n = 3), partial remission (PR; n = 4), and no response (NR; n = 2). In SLE, the Euro-Lupus regimen decreased the percentage and absolute count of B cells; increased the percentage of CD8+ T cells, T regulatory cells, neutrophils, and monocyte subsets; and activated T and NK cells compared to healthy controls (P < 0.050). Patients with LN achieving CR had significantly lower proportions of CD27+ B memory cells compared to poor responders (PR/NR, P = 0.035). The post-treatment percentages and absolute numbers of B cells, T cells, NK cells, monocytes, and neutrophils showed high inter-individual variability with no association with treatment outcome. Our pilot study revealed the dynamics of changes in immune cell populations in SLE patients during a Euro-Lupus regimen, mainly the lowering of B cells. In LN patients who achieved CR, a lower proportion of CD27+ B memory cells was evident compared to poor responders (PR/NR). Further studies on usefulness of monitoring immune cells for treatment response prediction on larger cohorts are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agematsu K, Nagumo H, Oguchi Y et al (1998) Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 91:173–180

    PubMed  CAS  Google Scholar 

  • Ahlmann M, Hempel G (2016) The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78:661–671

    PubMed  CAS  Google Scholar 

  • Alegretti AP, Schneider L, Piccoli AK et al (2012) diminished expression of complement regulatory proteins on peripheral blood cells from systemic lupus erythematosus patients. Clin Dev Immunol 2012:725684

    PubMed  PubMed Central  Google Scholar 

  • Amano H, Morimoto S, Kaneko H et al (2000) Effect of intravenous cyclophosphamide in systemic lupus erythematosus: relation to lymphocyte subsets and activation markers. Lupus 9:26–32

    PubMed  CAS  Google Scholar 

  • Austin AH, Illei GG, Braun MJ et al (2009) Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol 20:901–911

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boldt A, Kahlenberg F, Fricke S et al (2014) Flow cytometric phenotyping of lymphocytes in patients with systemic lupus erythematosus. Cytometry A 85:567–569

    PubMed  CAS  Google Scholar 

  • Carmona-Rivera C, Kaplan MJ (2014) Detection of SLE antigens in neutrophil extracellular traps (NETs). Methods Mol Biol 1134:151–161

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YE, Korbet SM, Katz RS et al (2008) Value of a complete or partial remission in severe lupus nephritis. Clin J Am Soc Nephrol 3:46–53

    PubMed  PubMed Central  CAS  Google Scholar 

  • Costa N, Marques O, Godinho SI et al (2017) Two separate effects contribute to regulatory T cell defect in systemic lupus erythematosus patients and their unaffected relatives. Clin Exp Immunol 189:318–330

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz-González DJ, Gómez-Martin D, Layseca-Espinosa E et al (2018) Analysis of the regulatory function of natural killer cells from patients with systemic lupus erythematosus. Clin Exp Immunol 191:288–300

    PubMed  Google Scholar 

  • Dörner T, Jacobi AM, Lipsky PE (2009) B cells in autoimmunity. Arthritis Res Ther 11:247

    PubMed  PubMed Central  Google Scholar 

  • Fanouriakis A, Pamfil C, Sidiropoulos P et al (2016) Cyclophosphamide in combination with glucocorticoids for severe neuropsychiatric systemic lupus erythematosus: a retrospective, observational two-centre study. Lupus 25:627–636

    PubMed  CAS  Google Scholar 

  • Fassbinder T, Saunders U, Mickholz E et al (2015) Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res Ther 17:92

    PubMed  PubMed Central  Google Scholar 

  • Gladman DD, Urowitz MB, Kagal A et al (2000) Accurately describing changes in disease activity in systemic lupus erythematosus. J Rheumatol 27:377–379

    PubMed  CAS  Google Scholar 

  • Gómez-Martín D, Díaz-Zamudio M, Vanoye G et al (2011) Quantitative and functional profiles of CD4+ lymphocyte subsets in systemic lupus erythematosus patients with lymphopenia. Clin Exp Immunol 164:17–25

    PubMed  PubMed Central  Google Scholar 

  • Horák P, Tegzová D, Závada Z et al (2013) Recommendation of Czech Rheumatology Society for treatment of systemic lupus erythematosus [in Czech]. Čes Revmatol 21:110–122

    Google Scholar 

  • Horwitz DA (2008) Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther 10:227

    PubMed  PubMed Central  Google Scholar 

  • Houssiau FA, Vasconcelos C, D’Cruz D et al (2002) Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 46:2121–2131

    PubMed  CAS  Google Scholar 

  • Houssiau FA, Vasconcelos C, D’Cruz D et al (2010) The 10-year follow-up data of the Euro-Lupus Nephritis Trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis 69:61–64

    PubMed  CAS  Google Scholar 

  • Hui-Yuen JS, Nguyen SC, Askanase AD (2016) Targeted B cell therapies in the treatment of adult and pediatric systemic lupus erythematosus. Lupus 25:1086–1096

    PubMed  CAS  Google Scholar 

  • Jacobi AM, Reiter K, Mackay M et al (2008) Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 58:1762–1773

    PubMed  CAS  Google Scholar 

  • Kaplan MJ (2011) Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol 7:691–699

    PubMed  PubMed Central  CAS  Google Scholar 

  • Katsuyama T, Tsokos GC, Moulton VR (2018) Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front Immunol 9:1088

    PubMed  PubMed Central  Google Scholar 

  • Kawabata D, Venkatesh J, Ramanujam M et al (2010) Enhanced selection of high affinity DNA-reactive b cells following cyclophosphamide treatment in mice. PLoS One 5:e8418

    PubMed  PubMed Central  Google Scholar 

  • Lacki JK, Mackiewicz SH, Leszczynski P et al (1997) The effect of intravenous cyclophosphamide pulse on peripheral blood lymphocytes in lupus erythematosus patients. Rheumatol Int 17:55–60

    PubMed  CAS  Google Scholar 

  • Lewis EE, McCune WJ, Knight JS (2016) Neutrophilia in systemic lupus erythematosus as a potential indicator of disease activity. Arthritis Rheumatol 2016(suppl 10):68

    Google Scholar 

  • Liu Z, Davidson A (2012) Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 18:871–882

    PubMed  PubMed Central  Google Scholar 

  • Manukyan G, Papajik T, Gajdos P et al (2017) Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget 8:84889–84901

    PubMed  PubMed Central  Google Scholar 

  • Merrill JT, Buyon JP (2005) The role of biomarkers in the assessment of lupus. Best Pract Res Clin Rheumatol 19:709–726

    PubMed  CAS  Google Scholar 

  • Moulton VR, Tsokos GC (2015) T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 125:2220–2227

    PubMed  PubMed Central  Google Scholar 

  • Moulton VR, Suarez-Fueyo A, Meidan E et al (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23:615–635

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nashi E, Wang Y, Diamond B (2010) The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol 42:543–550

    PubMed  CAS  Google Scholar 

  • Oaks Z, Winans T, Huang N et al (2016) Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr Rheumatol Rep 18:73

    PubMed  PubMed Central  Google Scholar 

  • Odendahl M, Jacobi A, Hansen A et al (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165:5970–5979

    PubMed  CAS  Google Scholar 

  • Pan X, Yuan X, Zheng Y et al (2012) Increased CD45RA + FoxP3(low) regulatory T cells with impaired suppressive function in patients with systemic lupus erythematosus. PLoS One 7:e34662

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park YW, Kee SJ, Cho YN et al (2009) Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum 60:1753–1763

    PubMed  CAS  Google Scholar 

  • Perl A (2016) Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12:169–182

    PubMed  CAS  Google Scholar 

  • Ren Y, Tang J, Mok MY et al (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    PubMed  Google Scholar 

  • Shirakawa F, Yamashita U, Suzuki H (1985) Decrease in HLA-DR-positive monocytes in patients with systemic lupus erythematosus (SLE). J Immunol 134:3560–3562

    PubMed  CAS  Google Scholar 

  • Silva-Neta HL, Brelaz-de-Castro MCA, Chagas MBO et al (2018) CD4+ CD45RA-FOXP3low regulatory T cells as potential biomarkers of disease activity in systemic lupus erythematosus Brazilian patients. Biomed Res Int 2018:3419565

    PubMed  PubMed Central  Google Scholar 

  • Smith CK, Kaplan MJ (2015) The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol 27:448–453

    PubMed  CAS  Google Scholar 

  • Steinbach F, Henke F, Krause B et al (2000) Monocytes from systemic lupus erythematous patients are severely altered in phenotype and lineage flexibility. Ann Rheum Dis 59:283–288

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamirou F, Husson SN, Gruson D et al (2017) Brief Report: the euro-lupus low-dose intravenous cyclophosphamide regimen does not impact the ovarian reserve, as measured by serum levels of anti-müllerian hormone. Arthritis Rheumatol 69:1267–1271

    PubMed  CAS  Google Scholar 

  • Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    CAS  Google Scholar 

  • Tselios K, Sarantopoulos A, Gkougkourelas I et al (2014) Increase of peripheral T regulatory cells during remission induction with cyclophosphamide in active systemic lupus erythematosus. Int J Rheum Dis 17:790–795

    PubMed  Google Scholar 

  • Tselios K, Sarantopoulos A, Gkougkourelas I et al (2015) The influence of therapy on CD4 + CD25(high)FOXP3 + regulatory T cells in systemic lupus erythematosus patients: a prospective study. Scand J Rheumatol 44:29–35

    PubMed  CAS  Google Scholar 

  • van Vollenhoven R, Voskuyl A, Bertsias G et al (2017) A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS). Ann Rheum Dis 76:554–561

    PubMed  Google Scholar 

  • Weening JJ, Dagati WD, Schwartz MM et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15:241–250

    Google Scholar 

  • Wu Y, Chen Y, Yang X et al (2016) Neutrophil-to-lymphocyte ratio (NLR) and Platelet-to-lymphocyte ratio (PLR) were associated with disease activity in patients with systemic lupus erythematosus. Int Immunopharmacol 36:94–99

    PubMed  CAS  Google Scholar 

  • Zhao L, Jiang Z, Jiang Y et al (2012) Changes in immune cell frequencies after cyclophosphamide or mycophenolate mofetil treatments in patients with systemic lupus erythematosus. Clin Rheumatol 31:951–959

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Jakub Savara, for his kind help with figures.

Funding

This work was supported by the Internal Grant Agency of Palacký University (IGA_LF_2019_006, and IGA_LF_2019_014), and, in part, by the Ministry of Health of Czech Republic (MH CZ—DRO (FNOL, 00098892).

Author information

Authors and Affiliations

Authors

Contributions

GG, ZM, AP: laboratory measurement, GG, SZ: statistical analysis, GG, EK: writing of the manuscript and interpretation of data, PH, MS, AS: collection of clinical data, PH, FM, MZ: critical revision of the manuscript, EK, PH: study design.

Corresponding author

Correspondence to Eva Kriegova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabcova, G., Horak, P., Mikulkova, Z. et al. Modulatory Effect of the Euro-Lupus Low-Dose Intravenous Cyclophosphamide Regimen on Circulating Immune Cells in Systemic Lupus Erythematosus. Arch. Immunol. Ther. Exp. 67, 415–425 (2019). https://doi.org/10.1007/s00005-019-00563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-019-00563-4

Keywords

Navigation