Skip to main content

Advertisement

Log in

Glucose Metabolism Disorders and the Risk of Cancer

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Diabetes and cancer are diseases which take the size of an epidemic spread across the globe. Those diseases are influenced by many factors, both genetic and environmental. Precise knowledge of the complex relationships and interactions between these two conditions is of great importance for their prevention and treatment. Many epidemiological studies have shown that certain types of cancer, especially gastrointestinal cancers (pancreas, liver, colon) and also the urinary and reproductive system cancers in women are more common in patients with diabetes or related metabolic disorders. There are also studies showing the inverse relationship between diabetes and cancer, or the lack of it, but they are less numerous and relate mainly to prostate cancer or squamous cell carcinoma of the esophagus. Epidemiological studies, however, do not say anything about the mechanisms of these dependencies. For this purpose, molecular research is needed on the metabolism of cells (including tumor cells) and on metabolic dysfunctions that arise due to changes in the cell environment taking place in the sick, as well as in the intensely treated human organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adami HO, Chow WH, Nyrén O et al (1996) Excess risk of primary liver cancer in patients with diabetes mellitus. J Natl Cancer Inst 88:1472–1477

    PubMed  CAS  Google Scholar 

  • Ahn J, Weinstein SJ, Snyder K et al (2006) No association between serum insulin-like growth factor (IGF)-I, IGF-binding protein-3, and lung cancer risk. Cancer Epidemiol Biomarkers Prev 15:2010–2012

    PubMed  CAS  Google Scholar 

  • Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53:233–256

    PubMed  CAS  Google Scholar 

  • Alexiou P, Chatzopoulou M, Pegklidou K et al (2010) RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem 17:2232–2252

    PubMed  CAS  Google Scholar 

  • Atchison EA, Gridley G, Carreon JD et al (2011) Risk of cancer in a large cohort of US veterans with diabetes. Int J Cancer 128:635–643

    PubMed  CAS  Google Scholar 

  • Balato A, Unutmaz D, Gaspari AA (2009) Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol 129:1628–1642

    PubMed  CAS  Google Scholar 

  • Balkau B, Kahn HS, Courbon D et al (2001) Hyperinsulinemia predicts fatal liver cancer but is inversely associated with fatal cancer at some other sites: the Paris Prospective Study. Diabetes Care 24:843–849

    PubMed  CAS  Google Scholar 

  • Barbarroja N, Lopez-Pedrera R, Mayas MD et al (2010) The obese healthy paradox: is inflammation the answer? Biochem J 430:141–149

    PubMed  CAS  Google Scholar 

  • Barone BB, Yeh HC, Snyder CF et al (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300:2754–2764

    PubMed  CAS  Google Scholar 

  • Barone BB, Yeh HC, Snyder CF et al (2010) Postoperative mortality in cancer patients with preexisting diabetes: systematic review and meta-analysis. Diabetes Care 33:931–939

    PubMed  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    PubMed  CAS  Google Scholar 

  • Bergamini E, Cavallini G, Donati A et al (2007) The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction. Ann NY Acad Sci 1114:69–78

    PubMed  CAS  Google Scholar 

  • Berzofsky JA, Terabe M (2009) The contrasting roles of NKT cells in tumor immunity. Curr Mol Med 9:667–672

    PubMed  CAS  Google Scholar 

  • Biassoni R (2009) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol Chapter 14:Unit 14.10

  • Blüher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250

    PubMed  Google Scholar 

  • Blüher M (2010) The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol 21:38–43

    PubMed  Google Scholar 

  • Boden G (2009) Endoplasmic reticulum stress: another link between obesity and insulin resistance/inflammation? Diabetes 58:518–519

    PubMed  CAS  Google Scholar 

  • Borugian MJ, Spinelli JJ, Sun Z et al (2007) Prediagnostic C-peptide and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 16:2164–2165

    PubMed  CAS  Google Scholar 

  • Boulle N, Logié A, Gicquel C et al (1998) Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83:1713–1720

    PubMed  CAS  Google Scholar 

  • Bowker SL, Majumdar SR, Veugelers P (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258

    PubMed  Google Scholar 

  • Bowker SL, Yasui Y, Veugelers P et al (2010) Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 53:1631–1637

    PubMed  CAS  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    PubMed  CAS  Google Scholar 

  • Bustamante E, Morris HP, Pedersen PL (1981) Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256:8699–8704

    PubMed  CAS  Google Scholar 

  • Buzzai M, Jones RG, Amaravadi RK et al (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67:6745–6752

    PubMed  CAS  Google Scholar 

  • Cai W, He JC, Zhu L et al (2004) High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation 110:285–291

    PubMed  CAS  Google Scholar 

  • Cannata D, Fierz Y, Vijayakumar A et al (2010) Type 2 diabetes and cancer: what is the connection? Mt Sinai J Med 77:197–213

    PubMed  Google Scholar 

  • Chan AC, Serwecinska L, Cochrane A et al (2009) Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family. Clin Exp Immunol 156:238–245

    PubMed  CAS  Google Scholar 

  • Chodick G, Heymann AD, Rosenmann L et al (2010) Diabetes and risk of incident cancer: a large population-based cohort study in Israel. Cancer Causes Control 21:879–887

    PubMed  Google Scholar 

  • Chong CR, Chabner BA (2009) Mysterious metformin. Oncologist 14:1178–1181

    PubMed  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    PubMed  CAS  Google Scholar 

  • Colhoun HM (2009) Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 52:1755–1765

    PubMed  CAS  Google Scholar 

  • Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    PubMed  CAS  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    PubMed  CAS  Google Scholar 

  • Corleta HE, Capp E, Corleta OC (1996) Insulin receptor tyrosine kinase activity in colon carcinoma. Braz J Med Biol Res 29:1593–1597

    PubMed  CAS  Google Scholar 

  • Coughlin SS, Calle EE, Teras LR et al (2004) Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159:1160–1167

    PubMed  Google Scholar 

  • Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28:1075–1083

    PubMed  CAS  Google Scholar 

  • Currie CJ, Poole CD, Gale EA (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52:1766–1777

    PubMed  CAS  Google Scholar 

  • Cust AE, Allen NE, Kaaks R et al (2007) Serum levels of C-peptide, IGFBP-1 and IGFBP-2 and endometrial cancer risk; results from the European prospective investigation into cancer and nutrition. Int J Cancer 120:2656–2664

    PubMed  CAS  Google Scholar 

  • De Meyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37(suppl 2):S135–S148

    PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    PubMed  CAS  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    PubMed  CAS  Google Scholar 

  • Dejgaard A, Lynggaard H, Råstam J et al (2009) No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis. Diabetologia 52:2507–2512

    PubMed  CAS  Google Scholar 

  • Díez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148:293–300

    PubMed  Google Scholar 

  • EASD, EMEA, ADA, FDA, IDF (http://webcast.easd.org/press/glargine/glargine.htm; http://www.ema.europa.eu “European Medicines Agency update on safety of insulin glargine”; http://forecast.diabetes.org/news/ada-statement-insulin-glargine-and-cancer; http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm169722.htm http://www.idf.org/idf-statement-studies-suggesting-possible-insulin-glargine-cancer-link)

  • Ehrlich SF, Quesenberry CP Jr, Van Den Eeden SK et al (2010) Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care 33:55–60

    PubMed  Google Scholar 

  • Eliassen AH, Tworoger SS, Mantzoros CS et al (2007) Circulating insulin and c-peptide levels and risk of breast cancer among predominately premenopausal women. Cancer Epidemiol Biomarkers Prev 16:161–164

    PubMed  CAS  Google Scholar 

  • El-Shewy HM, Luttrell LM (2009) Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitam Horm 80:667–697

    PubMed  CAS  Google Scholar 

  • FDA MedWatch Alert (2008) Exubera (insulin human rDNA origin) inhalation powder. http://www.drugs.com/fda/exubera-insulin-human-rdna-origin-inhalation-powder-12372

  • Feng YH, Velazquez-Torres G, Gully C et al (2010) The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med [Epub ahead of print]

  • Flood A, Strayer L, Schairer C et al (2010) Diabetes and risk of incident colorectal cancer in a prospective cohort of women. Cancer Causes Control 21:1277–1284

    PubMed  Google Scholar 

  • Frasca F, Pandini G, Sciacca L et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114:23–37

    PubMed  CAS  Google Scholar 

  • Friberg E, Orsini N, Mantzoros CS et al (2007) Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia 50:1365–1374

    PubMed  CAS  Google Scholar 

  • Furue H, Matsuo K, Kumimoto H et al (2008) Decreased risk of colorectal cancer with the high natural killer cell activity NKG2D genotype in Japanese. Carcinogenesis 29:316–320

    PubMed  CAS  Google Scholar 

  • Garofalo C, Surmacz E (2006) Leptin and cancer. J Cell Physiol 207:12–22

    PubMed  CAS  Google Scholar 

  • Gebhardt C, Riehl A, Durchdewald M et al (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205:275–285

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Harlan DM, Archer MC et al (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin 60:207–221

    PubMed  Google Scholar 

  • Godsland IF (2009) Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci 118:315–332

    PubMed  Google Scholar 

  • Goldberg T, Cai W, Peppa M et al (2004) Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 104:1287–1291

    PubMed  CAS  Google Scholar 

  • Gonzalez-Angulo AM, Meric-Bernstam F (2010) Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res 16:1695–1700

    PubMed  CAS  Google Scholar 

  • Górska E, Popko K, Winiarska M et al (2009) [Pleiotropic effects of leptin] (in Polish). Pediatr Endocrinol Diabetes Metab 15:45–50

    PubMed  Google Scholar 

  • Grote VA, Becker S, Kaaks R (2010) Diabetes mellitus type 2—an independent risk factor for cancer? Exp Clin Endocrinol Diabetes 118:4–8

    PubMed  CAS  Google Scholar 

  • Hall GC, Roberts CM, Boulis M et al (2005) Diabetes and the risk of lung cancer. Diabetes Care 28:590–594

    PubMed  Google Scholar 

  • Hammond KJ, Pelikan SB, Crowe NY et al (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29:3768–3781

    PubMed  CAS  Google Scholar 

  • Hayashi T, Tsujii S, Iburi T et al (2007) Laughter up-regulates the genes related to NK cell activity in diabetes. Biomed Res 28:281–285

    PubMed  CAS  Google Scholar 

  • Hébert E (2006) Mannose-6-phosphate/insulin-like growth factor II receptor expression and tumor development. Biosci Rep 26:7–17

    PubMed  Google Scholar 

  • Hemkens LG, Grouven U, Bender R et al (2009) Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52:1732–1744

    PubMed  CAS  Google Scholar 

  • Hemminki K, Li X, Sundquist J et al (2010) Risk of cancer following hospitalization for type 2 diabetes. Oncologist 15:548–555

    PubMed  Google Scholar 

  • Hermann C, Assmus B, Urbich C et al (2000) Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 20:402–409

    PubMed  CAS  Google Scholar 

  • Hirose K, Toyama T, Iwata H et al (2003) Insulin, insulin-like growth factor-I and breast cancer risk in Japanese women. Asian Pac J Cancer Prev 4:239–246

    PubMed  Google Scholar 

  • Hitosugi T, Kang S, Vander Heiden MG et al (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73

    Google Scholar 

  • Holly J, Perks C (2006) The role of insulin-like growth factor binding proteins. Neuroendocrinology 83:154–160

    PubMed  CAS  Google Scholar 

  • Home PD, Lagarenne P (2009) Combined randomised controlled trial experience of malignancies in studies using insulin glargine. Diabetologia 52:2499–2506

    PubMed  CAS  Google Scholar 

  • Houseknecht KL, Baile CA, Matteri RL et al (1998) The biology of leptin: a review. J Anim Sci 76:1405–1420

    PubMed  CAS  Google Scholar 

  • Hudelist G, Wagner T, Rosner M et al (2007) Intratumoral IGF-I protein expression is selectively upregulated in breast cancer patients with BRCA1/2 mutations. Endocr Relat Cancer 14:1053–1062

    PubMed  CAS  Google Scholar 

  • Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A et al (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92:2076–2083

    PubMed  CAS  Google Scholar 

  • Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20:761–787

    PubMed  CAS  Google Scholar 

  • Ihle NT, Powis G (2009) Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 8:1–9

    PubMed  CAS  Google Scholar 

  • Inoue M, Iwasaki M, Otani T et al (2006) Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 166:1871–1877

    PubMed  Google Scholar 

  • International Agency for Research on Cancer (2010). http://www.iarc.fr

  • International Diabetes Federation (2010) http://www.diabetesatlas.org/content/europe; http://www.idf.org/about-diabetes

  • Jamal MM, Yoon EJ, Vega KJ et al (2009) Diabetes mellitus as a risk factor for gastrointestinal cancer among American veterans. World J Gastroenterol 15:5274–5278

    PubMed  Google Scholar 

  • Jee SH, Ohrr H, Sull JW (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293:194–202

    PubMed  CAS  Google Scholar 

  • Jenab M, Riboli E, Cleveland RJ et al (2007) Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 121:368–376

    PubMed  CAS  Google Scholar 

  • Jensen M, De Meyts P (2009) Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitam Horm 80:51–75

    PubMed  CAS  Google Scholar 

  • Jerud ES, Bricard G, Porcelli SA (2006) CD1d-restricted natural killer t cells: roles in tumor immunosurveillance and tolerance. Transfus Med Hemother 33:18–36

    Google Scholar 

  • Jonasson JM, Ljung R, Talbäck M et al (2009) Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 52:1745–1754

    PubMed  CAS  Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    PubMed  CAS  Google Scholar 

  • Joshi N, Caputo GM, Weitekamp MR (1999) Infections in patients with diabetes mellitus. N Engl J Med 341:1906–1912

    PubMed  CAS  Google Scholar 

  • Kaaks R, Toniolo P, Akhmedkhanov A et al (2000) Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 92:1592–1600

    PubMed  CAS  Google Scholar 

  • Kasper JS, Giovanucci E (2006) A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:2056–2062

    PubMed  Google Scholar 

  • Kasper JS, Liu Y, Giovannucci E (2009) Diabetes mellitus and risk of prostate cancer in the health professionals follow-up study. Int J Cancer 124:1398–1403

    PubMed  CAS  Google Scholar 

  • Keinan-Boker L, Bueno De Mesquita HB, Kaaks R et al (2003) Circulating levels of insulin-like growth factor I, its binding proteins -1,-2, -3, C-peptide and risk of postmenopausal breast cancer. Int J Cancer 106:90–95

    PubMed  CAS  Google Scholar 

  • Kellerer M, von Eye Corleta H, Mühlhöfer A et al (1995) Insulin- and insulin-like growth-factor-I receptor tyrosine-kinase activities in human renal carcinoma. Int J Cancer 62:501–507

    PubMed  CAS  Google Scholar 

  • Key TJ, Spencer EA, Reeves GK (2010) Symposium 1: overnutrition: consequences and solutions. Obesity and cancer risk. Proc Nutr Soc 69:86–90

    PubMed  Google Scholar 

  • Kiessling R, Klein E, Pross H et al (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121

    PubMed  CAS  Google Scholar 

  • Kiessling R, Petranyi G, Kärre K et al (1976) Killer cells: a functional comparison between natural, immune T-cell and antibody-dependent in vitro systems. J Exp Med 143:772–780

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    PubMed  CAS  Google Scholar 

  • Kim WY, Jin Q, Oh SH et al (2009) Elevated epithelial insulin-like growth factor expression is a risk factor for lung cancer development. Cancer Res 69:7439–7448

    PubMed  CAS  Google Scholar 

  • Kisfalvi K, Eibl G, Sinnett-Smith J (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69:6539–6545

    PubMed  CAS  Google Scholar 

  • Kurtzhals P, Schäffer L, Sørensen A et al (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005

    PubMed  CAS  Google Scholar 

  • Landman GW, Ubink-Veltmaat LJ, Kleefstra N et al (2008) Increased cancer mortality in type 2 diabetes (ZODIAC-3). Anticancer Res 28:1373–1375

    PubMed  CAS  Google Scholar 

  • Landman GW, Kleefstra N, van Hateren KJ et al (2010a) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326

    PubMed  CAS  Google Scholar 

  • Landman GW, Van Hateren KJ, Kleefstra N et al (2010b) The relationship between obesity and cancer mortality in type 2 diabetes: a ten-year follow-up study (ZODIAC-21). Anticancer Res 30:681–682

    PubMed  CAS  Google Scholar 

  • Larsson SC, Orsini N, Wolk A (2005) Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst 97:1679–1687

    PubMed  Google Scholar 

  • Larsson SC, Mantzoros CS, Wolk A (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 121:856–862

    PubMed  CAS  Google Scholar 

  • Le Marchand L, Wang H, Rinaldi S et al (2010) Associations of plasma C-peptide and IGFBP-1 levels with risk of colorectal adenoma in a multiethnic population. Cancer Epidemiol Biomarkers Prev 19:1471–1477

    PubMed  CAS  Google Scholar 

  • Lee PD, Giudice LC, Conover CA (1997) Insulin-like growth factor binding protein-1 recent findings and new directions. Proc Soc Exp Biol Med 216:319–357

    PubMed  CAS  Google Scholar 

  • Lee JS, Weiss J, Martin JL et al (2003) Increased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor in breast cancer cells alters tumorigenic properties in vitro and in vivo. Int J Cancer 107:564–570

    PubMed  CAS  Google Scholar 

  • LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    PubMed  CAS  Google Scholar 

  • Li D, Yeung SC, Hassan MM et al (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137:482–488

    PubMed  Google Scholar 

  • Li Q, Kobayashi M, Inagaki H et al (2010) A day trip to a forest park increases human natural killer activity and the expression of anti-cancer proteins in male subjects. J Biol Regul Homeost Agents 24:157–165

    PubMed  CAS  Google Scholar 

  • Libby G, Donnelly LA, Donnan PT et al (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32:1620–1625

    PubMed  CAS  Google Scholar 

  • London SJ, Yuan JM, Travlos GS et al (2002) Insulin-like growth factor I, IGF-binding protein 3, and lung cancer risk in a prospective study of men in China. J Natl Cancer Inst 94:749–754

    PubMed  CAS  Google Scholar 

  • Lowry F (2010) Novel ultra long-acting insulin as effective as insulin glargine. Presented at the American Diabetes Association (ADA) 70th Scientific Sessions: Abstract 34-OR, Orlando (Florida), June 25, 2010

  • Lukanova A, Toniolo P, Akhmedkhanov A et al (2001) A prospective study of insulin-like growth factor-I, IGF-binding proteins-1, -2 and -3 and lung cancer risk in women. Int J Cancer 92:888–892

    PubMed  CAS  Google Scholar 

  • Lukanova A, Lundin E, Micheli A et al (2003) Risk of ovarian cancer in relation to prediagnostic levels of C-peptide, insulin-like growth factor binding proteins-1 and -2 (USA, Sweden, Italy). Cancer Causes Control 14:285–292

    PubMed  Google Scholar 

  • Lukanova A, Zeleniuch-Jacquotte A, Lundin E et al (2004) Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer. Int J Cancer 108:262–268

    PubMed  CAS  Google Scholar 

  • Lynch L, O’Shea D, Winter DC et al (2009a) Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 39:1893–1901

    PubMed  CAS  Google Scholar 

  • Lynch LA, O’Connell JM, Kwasnik AK et al (2009b) Are natural killer cells protecting the metabolically healthy obese patient? Obesity 17:601–605

    PubMed  CAS  Google Scholar 

  • Ma J, Giovannucci E, Pollak M et al (2004) A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst 96:546–553

    PubMed  CAS  Google Scholar 

  • Ma J, Li H, Giovannucci E et al (2008) Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol 9:1039–1047

    PubMed  CAS  Google Scholar 

  • Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    PubMed  CAS  Google Scholar 

  • Maes M, Meltzer HY, Stevens W et al (1994) Natural killer cell activity in major depression: relation to circulating natural killer cells, cellular indices of the immune response, and depressive phenomenology. Prog Neuropsychopharmacol Biol Psychiatry 18:717–730

    PubMed  CAS  Google Scholar 

  • Mannucci E, Monami M, Balzi D et al (2010) Doses of insulin and its analogues and cancer occurence in insulin-treated type 2 diabetic patients. Diabetes Care 33:1997–2003

    PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    PubMed  CAS  Google Scholar 

  • Mayer D, Chantelau E (2010) Treatment with insulin glargine (Lantus) increases the proliferative potency of the serum of patients with type-1 diabetes: a pilot study on MCF-7 breast cancer cells. Arch Physiol Biochem 116:73–78

    PubMed  CAS  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F et al (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308

    PubMed  CAS  Google Scholar 

  • Mercer JC, Ragin MJ, August A (2005) Natural killer T cells: rapid responders controlling immunity and disease. Int J Biochem Cell Biol 37:1337–1343

    PubMed  CAS  Google Scholar 

  • Michaud DS, Wolpin B, Giovannucci E et al (2007) Prediagnostic plasma C-peptide and pancreatic cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 16:2101–2109

    PubMed  CAS  Google Scholar 

  • Montoya CJ, Pollard D, Martinson J et al (2007) Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122:1–14

    PubMed  CAS  Google Scholar 

  • Moorehead RA, Sanchez OH, Baldwin RM et al (2003) Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22:853–857

    PubMed  CAS  Google Scholar 

  • Moretta L, Bottino C, Pende D et al (2005) Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100:7–13

    PubMed  CAS  Google Scholar 

  • Muller LM, Gorter KJ, Hak E et al (2005) Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 41:281–288

    PubMed  CAS  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203

    PubMed  CAS  Google Scholar 

  • O’Shea D, Cawood TJ, O’Farrelly C et al (2010) Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke. PLoS One 5:e8660

    PubMed  Google Scholar 

  • Pan SY, Johnson KC, Ugnat AM et al (2004) Association of obesity and cancer risk in Canada. Am J Epidemiol 159:259–268

    PubMed  Google Scholar 

  • Pedersen PL (2007) Warburg me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222

    PubMed  CAS  Google Scholar 

  • Pierce BL, Ahsan H (2010) Genetic susceptibility to type 2 diabetes is associated with reduced prostate cancer risk. Hum Hered 69:193–201

    PubMed  Google Scholar 

  • Rapp K, Schroeder J, Klenk J et al (2006) Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia 49:945–952

    PubMed  CAS  Google Scholar 

  • Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625

    PubMed  CAS  Google Scholar 

  • Renehan AG, Zwahlen M, Minder C et al (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353

    PubMed  CAS  Google Scholar 

  • Renehan AG, Tyson M, Egger M et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578

    PubMed  Google Scholar 

  • Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    PubMed  CAS  Google Scholar 

  • Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

    PubMed  CAS  Google Scholar 

  • Roddam AW, Allen NE, Appleby P et al (2008) Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med 149:461–471

    PubMed  Google Scholar 

  • Roder JC, Kiessling R, Biberfeld P et al (1978) Target-effector interaction in the natural killer (NK) cell system. II. The isolation of NK cells and studies on the mechanism of killing. J Immunol 121:2509–2517

    PubMed  CAS  Google Scholar 

  • Rosenstock J, Fonseca V, McGill JB et al (2009) Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: findings from a 5 year randomised, open-label study. Diabetologia 52:1971–1973

    PubMed  CAS  Google Scholar 

  • Rozengurt E, Sinnett-Smith J, Kisfalvi K (2010) Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 16:2505–2511

    PubMed  CAS  Google Scholar 

  • Schäfer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    PubMed  Google Scholar 

  • Schalkwijk CG, Stehouwer CD, van Hinsbergh VW (2004) Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev 20:369–382

    PubMed  CAS  Google Scholar 

  • Schoen RE, Tangen CM, Kuller LH et al (1999) Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91:1147–1154

    PubMed  CAS  Google Scholar 

  • Schupp N, Schinzel R, Heidland A (2005) Genotoxicity of advanced glycation end products: involvement of oxidative stress and of angiotensin II type 1 receptors. Ann NY Acad Sci 1043:685–695

    PubMed  CAS  Google Scholar 

  • Sciacca L, Cassarino MF, Genua M et al (2010) Insulin analogues differently activate insulin receptor isoforms and post-receptor signalling. Diabetologia 53:1743–1753

    PubMed  CAS  Google Scholar 

  • Sgambato A, Cittadini A (2010) Inflammation and cancer: a multifaceted link. Eur Rev Med Pharmacol Sci 14:263–268

    PubMed  CAS  Google Scholar 

  • Siekmeier R, Scheuch G (2008) Inhaled insulin—does it become reality? J Physiol Pharmacol 59(suppl 6):81–113

    PubMed  Google Scholar 

  • Sieradzki J (2005) Cukrzyca i zespół metaboliczny. In: Szczeklik A (ed) Choroby Wewnętrzne. Medycyna Praktyczna, Kraków, vol 1, pp 1179–1215

  • Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    PubMed  CAS  Google Scholar 

  • Sparvero LJ, Asafu-Adjei D, Kang R et al (2009) RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17

    PubMed  Google Scholar 

  • Spitz MR, Barnett MJ, Goodman GE et al (2002) Serum insulin-like growth factor (IGF) and IGF-binding protein levels and risk of lung cancer: a case-control study nested in the beta-Carotene and Retinol Efficacy Trial Cohort. Cancer Epidemiol Biomarkers Prev 11:1413–1418

    PubMed  CAS  Google Scholar 

  • Stattin P, Björ O, Ferrari P et al (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30:561–567

    PubMed  Google Scholar 

  • Stocks T, Lukanova A, Rinaldi S et al (2007) Insulin resistance is inversely related to prostate cancer: a prospective study in Northern Sweden. Int J Cancer 120:2678–2686

    PubMed  CAS  Google Scholar 

  • Stocks T, Rapp K, Bjørge T et al (2009) Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med 6:e1000201

    PubMed  Google Scholar 

  • Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44:25–36

    PubMed  CAS  Google Scholar 

  • Stopper H, Schinzel R, Sebekova K et al (2003) Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett 190:151–156

    PubMed  CAS  Google Scholar 

  • Swann JB, Uldrich AP, van Dommelen S et al (2009) Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113:6382–6385

    PubMed  CAS  Google Scholar 

  • Szkaradkiewicz A, Karpiński TM, Drews M et al (2010) Natural killer cell cytotoxicity and immunosuppressive cytokines (IL-10, TGF-beta1) in patients with gastric cancer. J Biomed Biotechnol 2010:901564

    PubMed  Google Scholar 

  • Takahashi K, Iwase M, Yamashita K et al (2001) The elevation of natural killer cell activity induced by laughter in a crossover designed study. Int J Mol Med 8:645–650

    PubMed  CAS  Google Scholar 

  • Tappy L, Lê KA, Tran C et al (2010) Fructose and metabolic diseases: new findings, new questions. Nutrition 26:1044–1049

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235

    PubMed  CAS  Google Scholar 

  • Uribarri J, Cai W, Peppa M et al (2007) Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 62:427–433

    PubMed  Google Scholar 

  • Uribarri J, Woodruff S, Goodman S et al (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110:911–916.e12

    Google Scholar 

  • Velcheti V, Govindan R (2006) Insulin-like growth factor and lung cancer. J Thorac Oncol 1:607–610

    PubMed  Google Scholar 

  • Vella V, Pandini G, Sciacca L et al (2002) A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin Endocrinol Metab 87:245–254

    PubMed  CAS  Google Scholar 

  • Vigneri P, Frasca F, Sciacca L et al (2009) Diabetes and cancer. Endocr Relat Cancer 16:1103–1123

    PubMed  CAS  Google Scholar 

  • Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    PubMed  CAS  Google Scholar 

  • Waters KM, Henderson BE, Stram DO et al (2009) Association of diabetes with prostate cancer risk in the multiethnic cohort. Am J Epidemiol 169:937–945

    PubMed  Google Scholar 

  • Wei EK, Ma J, Pollak MN et al (2005) A prospective study of C-peptide, insulin-like growth factor-I, insulin-like growth factor binding protein-1, and the risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 14:850–855

    PubMed  CAS  Google Scholar 

  • Werner H, Bruchim I (2009) The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 115:58–71

    PubMed  CAS  Google Scholar 

  • Werner H, Le Roith D (2000) New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci 57:932–942

    PubMed  CAS  Google Scholar 

  • Werner H, Weinstein D, Bentov I (2008) Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. Arch Physiol Biochem 114:17–22

    PubMed  CAS  Google Scholar 

  • WHO (http://www.who.int/mediacentre/factsheets/fs311/en/index.html, 07.06.2010)

  • Wolpin BM, Meyerhardt JA, Chan AT et al (2009) Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J Clin Oncol 27:176–185

    PubMed  Google Scholar 

  • Wuenschell GE, Tamae D, Cercillieux A et al (2010) Mutagenic potential of DNA glycation: miscoding by (R)- and (S)-N2-(1-carboxyethyl)-2′-deoxyguanosine. Biochemistry 49:1814–1821

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Nakamura K, Inoue H et al (2005) Possible participation of advanced glycation end products in the pathogenesis of colorectal cancer in diabetic patients. Med Hypotheses 64:1208–1210

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Matsui T, Nakamura K (2008) Possible involvement of tobacco-derived advanced glycation end products (AGEs) in an increased risk for developing cancers and cardiovascular disease in former smokers. Med Hypotheses 71:259–261

    PubMed  CAS  Google Scholar 

  • Yan SF, D’Agati V, Schmidt AM et al (2007) Receptor for Advanced Glycation Endproducts (RAGE): a formidable force in the pathogenesis of the cardiovascular complications of diabetes & aging. Curr Mol Med 7:699–710

    PubMed  CAS  Google Scholar 

  • Yeluri S, Madhok B, Prasad KR et al (2009) Cancer’s craving for sugar: an opportunity for clinical exploitation. J Cancer Res Clin Oncol 135:867–877

    PubMed  CAS  Google Scholar 

  • Yi HK, Hwang PH, Yang DH et al (2001) Expression of the insulin-like growth factors (IGFs) and the IGF-binding proteins (IGFBPs) in human gastric cancer cells. Eur J Cancer 37:2257–2263

    PubMed  CAS  Google Scholar 

  • Zhou XH, Qiao Q, Zethelius B et al (2010) Diabetes, prediabetes and cancer mortality. Diabetologia 53:1867–1876

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Piątkiewicz.

About this article

Cite this article

Piątkiewicz, P., Czech, A. Glucose Metabolism Disorders and the Risk of Cancer. Arch. Immunol. Ther. Exp. 59, 215–230 (2011). https://doi.org/10.1007/s00005-011-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0119-0

Keywords

Navigation