Skip to main content

Advertisement

Log in

Expanding and converting regulatory T cells: a horizon for immunotherapy

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The human immune system is a myriad of diverse cellular populations, each contributing to maintaining an effective and optimal immune response against infectious agents. It is important to maintain a “self-check” in the immune system so that responses do not go haywire, leading to the development of autoimmune diseases. Regulatory/suppressor T (Treg) cells are a specialized subpopulation of T cells that suppress the activation, expansion, and function of other T cells, thereby maintaining homeostasis through a fine balance between reactivity to foreign and self antigens. Tregs are characterized by surface expression of interleukin (IL)-2 receptor α chain (CD25) and intracellular expression of forkhead box protein P3 (FoxP3). There are at least two important functional populations of Treg cells, namely natural Treg (nTreg), which are continuously derived from the thymus, and induced Treg (iTreg), which are converted from naive T cells. The development and function of both nTreg and iTreg cells are regulated by several factors, such as antigen T-cell receptor, co-stimulatory receptors (i.e., cytotoxic T lymphocyte-associated antigen, or CTLA-4), and cytokines (IL-2, IL-10, and tumor growth factor-β, or TGF-β). In addition, the TGF-β inhibitor ALK5, retinoid acid, and rapamycin influence the expansion of nTreg cells and the conversion of iTreg cells in vitro and in vivo. The heightening of Treg expansion may be harnessed to therapeutic methods for the treatment of autoimmune diseases and the induction of transplantation tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asiedu CK, Goodwin KJ, Balgansuren G et al (2005) Elevated T regulatory cells in long-term stable transplant tolerance in rhesus macaques induced by anti-CD3 immunotoxin and deoxyspergualin. J Immunol 175: 8060–8068

    PubMed  CAS  Google Scholar 

  • Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177: 8338–8347

    PubMed  CAS  Google Scholar 

  • Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg S, Takahashi T, de la RM et al (2008) IL-2 induces in vivo suppression by CD4(+)CD25(+)Foxp3(+) regulatory T cells. Eur J Immunol 38: 1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Coombes JL, Siddiqui KR, rancibia-Carcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204: 1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Costantino CM, Baecher-Allan CM, Hafler DA (2008) Human regulatory T cells and autoimmunity. Eur J Immunol 38: 921–924

    Article  PubMed  CAS  Google Scholar 

  • Couper KN, Blount DG, de Souza JB et al (2007) Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol 178: 4136–4146

    PubMed  CAS  Google Scholar 

  • Demirkiran A, Hendrikx TK, Baan CC et al (2008) Impact of immunosuppressive drugs on CD4+CD25+FOXP3+ regulatory T cells: does in vitro evidence translate to the clinical setting. Transplantation 85: 783–789

    Article  PubMed  CAS  Google Scholar 

  • Fantini MC, Becker C, Tubbe I et al (2006) Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 55: 671–680

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci S, Antonelli E, Distrutti E et al (2002) NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Proc Natl Acad Sci USA 99: 15770–15775

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Lu Y, El EB et al (2007) Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant 7: 1722–1732

    Article  PubMed  CAS  Google Scholar 

  • Golshayan D, Jiang S, Tsang J et al (2007) In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109: 827–835

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Shang W, Sun Z (2008) Mechanisms regulating the development and function of natural regulatory T cells. Arch Immunol Ther Exp 56: 85–102

    Article  CAS  Google Scholar 

  • Hinz S, Pagerols-Raluy L, Oberg HH et al (2007) Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67: 8344–8350

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Li N, Zhang X et al (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA 102: 6449–6454

    Article  PubMed  CAS  Google Scholar 

  • Horwitz DA, Zheng SG, Wang J et al (2008) Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 38: 912–915

    Article  PubMed  CAS  Google Scholar 

  • Kang HK, Liu M, Datta SK (2007) Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol 178: 7849–7858

    PubMed  CAS  Google Scholar 

  • Kreijveld E, Koenen HJ, Klasen IS et al (2007) Following anti-CD25 treatment, a functional CD4+CD25+ regulatory T-cell pool is present in renal transplant recipients. Am J Transplant 7: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer K, Apostolou I, Hawiger D et al (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6: 1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Alard P, Zhao Y et al (2005) Conversion of CD4+ CD25– cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28: 100–111

    Article  PubMed  CAS  Google Scholar 

  • Liston A, Rudensky AY (2007) Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol 19: 176–185

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Tarbell KV, Yang H et al (2007) Dendritic cells with TGF-beta1 differentiate naive CD4+CD25– T cells into isletprotective Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 104: 2821–2826

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Kobayashi T, Ichiyama K et al (2007) Selective expansion of foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. J Immunol 179: 2170–2179

    PubMed  CAS  Google Scholar 

  • Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256–260

    Article  PubMed  CAS  Google Scholar 

  • Pennington DJ, Silva-Santos B, Silberzahn T et al (2006) Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562

    Article  PubMed  CAS  Google Scholar 

  • Salomon B, Lenschow DJ, Rhee L et al (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12: 431–440

    Article  PubMed  CAS  Google Scholar 

  • Scott-Browne JP, Shafiani S, Tucker-Heard G et al (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204: 2159–2169

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj RK, Geiger TL (2007) A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J Immunol 178: 7667–7677

    PubMed  CAS  Google Scholar 

  • Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199: 1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13: 1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Tarbell KV, Yamazaki S, Olson K et al (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199: 1467–1477

    Article  PubMed  CAS  Google Scholar 

  • Tuovinen H, Kekalainen E, Rossi LH et al (2008) Cutting edge: human CD4–CD8– thymocytes express FOXP3 in the absence of a TCR. J Immunol 180: 3651–3654

    PubMed  CAS  Google Scholar 

  • Turka LA, Walsh PT (2008) IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells. Front Biosci 13: 1440–1446

    Article  PubMed  CAS  Google Scholar 

  • Wan YY, Flavell RA (2007) Regulatory T cells, transforming growth factor-beta, and immune suppression. Proc Am Thorac Soc 4: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Hong J, Sun W et al (2006) Role of IFN-gamma in induction of Foxp3 and conversion of CD4+CD25– T cells to CD4+ Tregs. J Clin Invest 116: 2434–2441

    PubMed  CAS  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–275

    Article  PubMed  CAS  Google Scholar 

  • Zheng SG, Wang JH, Gray JD et al (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25– cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172: 5213–5221

    PubMed  CAS  Google Scholar 

  • Zheng SG, Wang J, Wang P et al (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25– cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178: 2018–2027

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhao Chen or Stanislaw M. Stepkowski.

About this article

Cite this article

Khattar, M., Chen, W. & Stepkowski, S.M. Expanding and converting regulatory T cells: a horizon for immunotherapy. Arch. Immunol. Ther. Exp. 57, 199–204 (2009). https://doi.org/10.1007/s00005-009-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0021-1

Keywords

Navigation