Skip to main content
Log in

Interpreting a 1 fb−1 ATLAS search in the minimal anomaly mediated supersymmetry breaking model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent LHC data significantly extend the exclusion limits for supersymmetric particles, particularly in the jets plus missing transverse momentum channels. The most recent such data have so far been interpreted by the experiment in only two different supersymmetry breaking models: the constrained minimal supersymmetric standard model (CMSSM) and a simplified model with only squarks and gluinos and massless neutralinos. We compare kinematical distributions of supersymmetric signal events predicted by the CMSSM and anomaly mediated supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We obtain a lower limit of 900 GeV on squark and gluino masses at the 95% confidence level for the equal mass limit, tan β = 10 and μ > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].

    Article  ADS  Google Scholar 

  3. CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].

    ADS  Google Scholar 

  4. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, arXiv:1109.6572 [INSPIRE].

  5. CMS collaboration, S. Chatrchyan et al., Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, arXiv:1109.2352 [INSPIRE].

  6. CMS collaboration, V. Khachatryan et al., Search for supersymmetry in all-hadronic events with MT2, CMS-PAS-SUS-11-005.

  7. CMS collaboration, V. Khachatryan et al., Search for supersymmetry in all-hadronic events with missing energy, CMS-PAS-SUS-11-004.

  8. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  10. L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].

    ADS  Google Scholar 

  11. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  12. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    Article  ADS  Google Scholar 

  13. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173[hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  14. P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7 \) TeV run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [INSPIRE].

    ADS  Google Scholar 

  15. S. Akula et al., Interpreting the First CMS and ATLAS SUSY Results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].

    ADS  Google Scholar 

  16. M.J. Dolan, D. Grellscheid, J. Jaeckel, V.V. Khoze and P. Richardson, New Constraints on Gauge Mediation and Beyond from LHC SUSY Searches at 7 TeV, JHEP 06 (2011) 095 [arXiv:1104.0585] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Sakurai and K. Takayama, Constraint from recent ATLAS results to non-universal sfermion mass models and naturalness, arXiv:1106.3794 [INSPIRE].

  18. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, Has SUSY Gone Undetected in 9-jet Events? A Ten-Fold Enhancement in the LHC Signal Efficiency, arXiv:1108.5169 [INSPIRE].

  19. S. Sekmen et al., Interpreting LHC SUSY searches in the phenomenological MSSM, arXiv:1109.5119 [INSPIRE].

  20. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27 [hep-ph/9904378] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.L. Feng and T. Moroi, Supernatural supersymmetry: Phenomenological implications of anomaly mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 095004 [hep-ph/9907319] [INSPIRE].

    ADS  Google Scholar 

  23. B. Allanach, G. Hiller, D. Jones and P. Slavich, Flavour Violation in Anomaly Mediated Supersymmetry Breaking, JHEP 04 (2009) 088 [arXiv:0902.4880] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.L. Feng, V. Rentala and Z. Surujon, WIMPless Dark Matter in Anomaly-Mediated Supersymmetry Breaking with Hidden QED, arXiv:1108.4689 [INSPIRE].

  25. J.L. Feng and Y. Shadmi, WIMPless Dark Matter from Non-Abelian Hidden Sectors with Anomaly-Mediated Supersymmetry Breaking, Phys. Rev. D 83 (2011) 095011 [arXiv:1102.0282] [INSPIRE].

    ADS  Google Scholar 

  26. F.E. Paige and J.D. Wells, Anomaly mediated SUSY breaking at the LHC, hep-ph/0001249 [INSPIRE].

  27. A. Barr, C. Lester, M.A. Parker, B. Allanach and P. Richardson, Discovering anomaly mediated supersymmetry at the LHC, JHEP 03 (2003) 045 [hep-ph/0208214] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Allanach and M.J. Dolan, Supersymmetry With Prejudice: Fitting the Wrong Model to LHC Data, arXiv:1107.2856 [INSPIRE].

  29. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].

    ADS  Google Scholar 

  30. D. Tovey, Measuring the SUSY mass scale at the LHC, Phys. Lett. B 498 (2001) 1 [hep-ph/0006276] [INSPIRE].

    ADS  Google Scholar 

  31. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  32. P.Z. Skandset al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  35. M. Cacciari and G.P. Salam, Jet clustering in particle physics, via a dynamic nearest neighbour graph implemented with CGAL, unpublished (2006).

  36. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  37. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  38. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \overline p p \) and e + e reactions, hep-ph/0312045 [INSPIRE].

  39. B. Allanach, S. Kraml and W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools, JHEP 03 (2003) 016 [hep-ph/0302102] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

    ADS  Google Scholar 

  41. A. Barr, C. Lester and P. Stephens, m T2 : The truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

    ADS  Google Scholar 

  42. H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m T2 , JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B.C. Allanach, A.J. Barr, A. Dafinca and C. Gwenlan, Discovery reach for generic supersymmetry at the LHC: MT2 versus missing transverse momentum selections for pMSSM searches, JHEP 07 (2011) 104 [arXiv:1105.1024] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. AbdusSalam et al., Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC, arXiv:1109.3859 [INSPIRE].

  45. A.L. Read, Modified frequentist analysis of search results (The CL s method), CERN Report CERN-OPEN-2000-205.

  46. D. Alves et al., Simplified Models for LHC New Physics Searches, arXiv:1105.2838 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakurai.

Additional information

ArXiv ePrint: 1110.1119

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allanach, B.C., Khoo, T.J. & Sakurai, K. Interpreting a 1 fb−1 ATLAS search in the minimal anomaly mediated supersymmetry breaking model. J. High Energ. Phys. 2011, 132 (2011). https://doi.org/10.1007/JHEP11(2011)132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)132

Keywords

Navigation