Skip to main content
Log in

A chiral magnetic effect from AdS/CFT with flavor

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

For (3 + 1)-dimensional fermions, a net axial charge and externalmagneticfield can lead to a current parallel to the magnetic field. This is the chiral magnetic effect. We use gauge-gravity duality to study the chiral magnetic effect in large-N c , strongly-coupled \( \mathcal{N} = 4 \) supersymmetric SU(N c ) Yang-Mills theory coupled to a number N f  ≪ N c of \( \mathcal{N} = 2 \) hypermultiplets in the N c representation of SU(N c ), i.e. flavor fields. Specifically, we introduce an external magnetic field and a time-dependent phase for the mass of the flavor fields, which is equivalent to an axial chemical potential for the flavor fermions, and we compute holographically the resulting chiral magnetic current. For massless flavors we find that the current takes the value determined by the axial anomaly. For massive flavors the current appears only in the presence of a condensate of pseudo-scalar mesons, and has a smaller value than for massless flavors, dropping to zero for sufficiently large mass or magnetic field. The axial symmetry in our system is part of the R-symmetry, and the states we study involve a net flow of axial charge to the adjoint sector from an external source coupled to the flavors. We compute the time rate of change of axial charge and of energy both in field theory and from holography, with perfect agreement. In contrast to previous holographic models of the chiral magnetic effect, in our system the vector current is conserved and gauge-invariant without any special counterterms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Y. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of Transport Properties in Equilibrium, the Goldstone Theorem, and Chiral Anomaly, Phys. Rev. Lett. 81 (1998) 3503 [cond-mat/9803346].

    Article  ADS  Google Scholar 

  2. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [ INSPIRE].

    ADS  Google Scholar 

  3. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [ INSPIRE].

    ADS  Google Scholar 

  4. K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, Phys. Rev. D 82 (2010) 054001 [arXiv:1004.2769] [ INSPIRE].

    ADS  Google Scholar 

  5. D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [ INSPIRE].

    ADS  Google Scholar 

  6. D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [ INSPIRE].

    ADS  Google Scholar 

  7. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [ INSPIRE].

    Article  ADS  Google Scholar 

  8. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [ INSPIRE].

    ADS  Google Scholar 

  9. M. Asakawa, A. Majumder and B. Müller, Electric Charge Separation in Strong Transient Magnetic Fields, Phys. Rev. C 81 (2010) 064912 [arXiv:1003.2436] [ INSPIRE].

    ADS  Google Scholar 

  10. D. Kharzeev, R. Pisarski and M.H. Tytgat, Possibility of spontaneous parity violation in hot QCD, Phys. Rev. Lett. 81 (1998) 512 [hep-ph/9804221] [ INSPIRE].

    Article  ADS  Google Scholar 

  11. STAR Collaboration collaboration, I.V. Selyuzhenkov, Global polarization and parity violation study in Au + Au collisions, Rom. Rep. Phys. 58 (2006) 049 [nucl-ex/0510069] [ INSPIRE].

    Google Scholar 

  12. STAR Collaboration collaboration, S.A. Voloshin, Probe for the strong parity violation effects at RHIC with three particle correlations, Indian J. Phys. 85 (2011) 1103 [arXiv:0806.0029] [ INSPIRE].

    Article  Google Scholar 

  13. STAR Collaboration collaboration, B. Abelev et al., Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908 [arXiv:0909.1717] [ INSPIRE].

    ADS  Google Scholar 

  14. F. Wang, Effects of Cluster Particle Correlations on Local Parity Violation Observables, Phys. Rev. C 81 (2010) 064902 [arXiv:0911.1482] [ INSPIRE].

    ADS  Google Scholar 

  15. P. Buividovich, E. Luschevskaya, M. Polikarpov and M. Chernodub, Chiral magnetic effect in SU(2) lattice gluodynamics at zero temperature, JETP Lett. 90 (2009) 412 [ INSPIRE].

    Article  ADS  Google Scholar 

  16. P. Buividovich, M. Chernodub, E. Luschevskaya and M. Polikarpov, Numerical study of chiral magnetic effect in quenched SU(2) lattice gauge theory, PoS(LAT2009)080 [arXiv:0910.4682] [ INSPIRE].

  17. M. Abramczyk, T. Blum, G. Petropoulos and R. Zhou, Chiral magnetic effect in 2 + 1 flavor QCD + QED, PoS(LAT2009)181 [arXiv:0911.1348] [ INSPIRE].

  18. A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys. Rev. Lett. 107 (2011) 031601 [arXiv:1105.0385] [ INSPIRE].

    Article  ADS  Google Scholar 

  19. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [ INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  20. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [ INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  22. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [ INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [ INSPIRE].

    ADS  Google Scholar 

  24. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [ INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [ INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt {s} = 200 \) GeV, Phys. Rev. C 78 (2008) 034915 [arXiv:0804.4015] [ INSPIRE].

    ADS  Google Scholar 

  27. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [ INSPIRE].

    Article  ADS  Google Scholar 

  28. H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [ INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Gorsky, P. Kopnin and A. Zayakin, On the Chiral Magnetic Effect in Soft-Wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [ INSPIRE].

    ADS  Google Scholar 

  30. V. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [ INSPIRE].

  31. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [ INSPIRE].

    Article  ADS  Google Scholar 

  32. L. Brits and J. Charbonneau, A Constraint-Based Approach to the Chiral Magnetic Effect, Phys. Rev. D 83 (2011) 126013 [arXiv:1009.4230] [ INSPIRE].

    ADS  Google Scholar 

  33. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334] [ INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam,et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [ INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Eling, Y. Neiman and Y. Oz, Holographic Non-Abelian Charged Hydrodynamics from the Dynamics of Null Horizons, JHEP 12 (2010) 086 [arXiv:1010.1290] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Sadofyev and M. Isachenkov, The Chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [ INSPIRE].

    ADS  Google Scholar 

  39. Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D.E. Kharzeev and H.-U. Yee, Chiral Magnetic Wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [ INSPIRE].

    ADS  Google Scholar 

  41. B. Keren-Zur and Y. Oz, Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [ INSPIRE].

    Article  ADS  Google Scholar 

  42. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [ INSPIRE].

    Article  ADS  Google Scholar 

  43. Y. Burnier, D.E. Kharzeev, J. Liao and H.-U. Yee, Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions, Phys. Rev. Lett. 107 (2011) 052303 [arXiv:1103.1307] [ INSPIRE].

    Article  ADS  Google Scholar 

  44. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic QCD, Phys. Rev. D 79 (2009) 105024 [arXiv:0806.0366] [ INSPIRE].

    ADS  Google Scholar 

  47. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Evans and E. Threlfall, R-Charge Chemical Potential in the M2-M5 System, arXiv:0807.3679 [ INSPIRE].

  49. A. O’Bannon, Toward a Holographic Model of Superconducting Fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [ INSPIRE].

    Article  Google Scholar 

  50. N. Evans and E. Threlfall, Chemical Potential in the Gravity Dual of a 2 + 1 Dimensional System, Phys. Rev. D 79 (2009) 066008 [arXiv:0812.3273] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. V.G. Filev, C.V. Johnson, R. Rashkov and K. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [ INSPIRE].

    Article  ADS  Google Scholar 

  56. V.G. Filev, Criticality, scaling and chiral symmetry breaking in external magnetic field, JHEP 04 (2008) 088 [arXiv:0706.3811] [ INSPIRE].

    Article  ADS  Google Scholar 

  57. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory with quarks in an external magnetic field, JHEP 07 (2008) 080 [arXiv:0709.1547] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. O’Bannon, Hall Conductivity of Flavor Fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [ INSPIRE].

    ADS  Google Scholar 

  60. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. K. Ghoroku, T. Sakaguchi, N. Uekusa and M. Yahiro, Flavor quark at high temperature from a holographic model, Phys. Rev. D 71 (2005) 106002 [hep-th/0502088] [ INSPIRE].

    ADS  Google Scholar 

  63. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [ INSPIRE].

    ADS  Google Scholar 

  65. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031 [hep-th/0612169] [ INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. J. Mas, J.P. Shock and J. Tarrio, Holographic Spectral Functions in Metallic AdS/CFT, JHEP 09 (2009) 032 [arXiv:0904.3905] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. S. PremKumar, Spinning flavour branes and fermion pairing instabilities, Phys. Rev. D 84 (2011) 026003 [arXiv:1104.1405] [ INSPIRE].

    Google Scholar 

  70. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [ INSPIRE].

    Article  ADS  Google Scholar 

  71. O. Aharony, J. Sonnenschein and S. Yankielowicz, A Holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. J.L. Barbón, C. Hoyos-Badajoz, D. Mateos and R.C. Myers, The Holographic life of the eta’, JHEP 10 (2004) 029 [hep-th/0404260] [ INSPIRE].

    Article  ADS  Google Scholar 

  73. E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [ INSPIRE].

    Article  MathSciNet  Google Scholar 

  74. E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [ INSPIRE].

    Article  MathSciNet  Google Scholar 

  75. O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [ INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Dhar and P. Nag, Sakai-Sugimoto model, Tachyon Condensation and Chiral symmetry Breaking, JHEP 01 (2008) 055 [arXiv:0708.3233] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Dhar and P. Nag, Tachyon condensation and quark mass in modified Sakai-Sugimoto model, Phys. Rev. D 78 (2008) 066021 [arXiv:0804.4807] [ INSPIRE].

    ADS  Google Scholar 

  78. R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [ INSPIRE].

    Article  ADS  Google Scholar 

  79. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [ INSPIRE].

    ADS  Google Scholar 

  80. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [ INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [ INSPIRE].

    ADS  Google Scholar 

  83. A. Karch, A. O’Bannon and E. Thompson, The Stress-Energy Tensor of Flavor Fields from AdS/CFT, JHEP 04 (2009) 021 [arXiv:0812.3629] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [ INSPIRE].

    ADS  Google Scholar 

  87. S.S. Gubser and A. Yarom, Linearized hydrodynamics from probe-sources in the gauge-string duality, Nucl. Phys. B 813 (2009) 188 [arXiv:0803.0081] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. B. Sahoo and H.-U. Yee, Electrified plasma in AdS/CFT correspondence, JHEP 11 (2010) 095 [arXiv:1004.3541] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. G. Basar, G.V. Dunne and D.E. Kharzeev, Chiral Magnetic Spiral, Phys. Rev. Lett. 104 (2010) 232301 [arXiv:1003.3464] [ INSPIRE].

    Article  ADS  Google Scholar 

  91. K.-Y. Kim, B. Sahoo and H.-U. Yee, Holographic chiral magnetic spiral, JHEP 10 (2010) 005 [arXiv:1007.1985] [ INSPIRE].

    Article  ADS  Google Scholar 

  92. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [ INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  94. A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. A. Karch and A. O’Bannon, Chiral transition of N = 4 super Yang-Mills with flavor on a 3-sphere, Phys. Rev. D 74 (2006) 085033 [hep-th/0605120] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  96. K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [ INSPIRE].

    Article  ADS  Google Scholar 

  97. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977].

    ADS  Google Scholar 

  98. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [ INSPIRE].

    ADS  Google Scholar 

  99. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [ INSPIRE].

    ADS  Google Scholar 

  101. M. Ammon, J. Erdmenger, M. Kaminski and A.O’Bannon, Fermionic Operator Mixing in Holographic p-wave Superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  102. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [ INSPIRE].

    ADS  Google Scholar 

  103. D.E. Kharzeev, Topologically induced local P and CP-violation in QCD × Qed, Annals Phys. 325 (2010) 205 [arXiv:0911.3715] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  104. X.-L. Qi, T. Hughes and S.-C. Zhang, Topological Field Theory of Time-Reversal Invariant Insulators, arXiv:0802.3537 [ INSPIRE].

  105. C. Hoyos-Badajoz, K. Jensen and A. Karch, A Holographic Fractional Topological Insulator, Phys. Rev. D 82 (2010) 086001 [arXiv:1007.3253] [ INSPIRE].

    ADS  Google Scholar 

  106. A. Karch, D. Son and A. Starinets, Zero Sound from Holography, arXiv:0806.3796 [ INSPIRE].

  107. O. Bergman, G. Lifschytz and M. Lippert, Response of Holographic QCD to Electric and Magnetic Fields, JHEP 05 (2008) 007 [arXiv:0802.3720] [ INSPIRE].

    Article  ADS  Google Scholar 

  108. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  109. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  111. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  112. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A A 42 (2009) 504008 [arXiv:0905.0932] [ INSPIRE].

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hoyos.

Additional information

ArXiv ePrint: 1106.4030

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyos, C., Nishioka, T. & O’Bannon, A. A chiral magnetic effect from AdS/CFT with flavor. J. High Energ. Phys. 2011, 84 (2011). https://doi.org/10.1007/JHEP10(2011)084

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)084

Keywords

Navigation