Skip to main content
Log in

Implications of a new light scalar near the bottomonium regime

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the decay modes of a new, light spin-0 particle, arguing that if the mass of the (pseudo)scalar is ~ 11–15 GeV, it can have an appreciable branching ratio into bottomonium, in particular the rare η b s. Using non-relativistic QCD (NRQCD), we calculate its decay rate to bottomonia for mass splittings greater than the typical momentum transfer within the bound state. It can exceed that of decays to other Standard Model fermions under the assumption of couplings proportional to those of the Standard Model. At smaller splittings, where our computational methods break down, we estimate the rate into bottomonia using data-driven methods. When the spin-0 state decays to bottomonia whose mass is too light to produce B-meson pairs, we get a qualitatively new experimental signature, decays to b-quarks invisible to b-tagging. Such a light, spinless particle can arise in extended Higgs sectors, making this channel potentially observable in decay chains initiated by the subdominant decay of a Standard Model-like Higgs to a pair of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Search for the Standard Model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    Article  ADS  Google Scholar 

  3. B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric Standard Model, JHEP 09 (2000) 031 [hep-ph/0008192] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  6. B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Charming Higgs, Phys. Rev. D 81 (2010) 075017 [arXiv:0910.3210] [INSPIRE].

    ADS  Google Scholar 

  7. B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Buried Higgs, Phys. Rev. D 80 (2009) 075008 [arXiv:0906.3026] [INSPIRE].

    ADS  Google Scholar 

  8. C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].

    ADS  Google Scholar 

  9. R. Dermisek and J.F. Gunion, New constraints on a light CP-odd Higgs boson and related NMSSM ideal Higgs scenarios, Phys. Rev. D 81 (2010) 075003 [arXiv:1002.1971] [INSPIRE].

    ADS  Google Scholar 

  10. R. Dermisek and J.F. Gunion, Direct production of a light CP-odd Higgs boson at the Tevatron and LHC, Phys. Rev. D 81 (2010) 055001 [arXiv:0911.2460] [INSPIRE].

    ADS  Google Scholar 

  11. ATLAS collaboration, A search for light CP-odd Higgs bosons decaying to μ + μ in ATLAS, ATLAS-CONF-2011-020, CERN, Geneva Switzerland (2011).

  12. S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs boson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Dermisek, Hidden Higgs scenarios: new constraints and prospects at the LHC, arXiv:1008.0222 [INSPIRE].

  14. M. Drees, M. Guchait and D. Roy, Signature of charged to neutral Higgs boson decay at the LHC in SUSY models, Phys. Lett. B 471 (1999) 39 [hep-ph/9909266] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Arhrib, K. Cheung, T.-J. Hou and K.-W. Song, Associated production of a light pseudoscalar Higgs boson with a chargino pair in the NMSSM, JHEP 03 (2007) 073 [hep-ph/0606114] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Cheung and T.-J. Hou, Light pseudoscalar Higgs boson in neutralino decays in the next-to-minimal supersymmetric Standard Model, Phys. Lett. B 674 (2009) 54 [arXiv:0809.1122] [INSPIRE].

    ADS  Google Scholar 

  17. P.W. Graham, A. Pierce and J.G. Wacker, Four taus at the Tevatron, hep-ph/0605162 [INSPIRE].

  18. F. Domingo, U. Ellwanger, E. Fullana, C. Hugonie and M.-A. Sanchis-Lozano, Radiative \( Y \) decays and a light pseudoscalar Higgs in the NMSSM, JHEP 01 (2009) 061 [arXiv:0810.4736] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Domingo, U. Ellwanger and M.-A. Sanchis-Lozano, Bottomoniom spectroscopy with mixing of η b states and a light CP-odd Higgs, Phys. Rev. Lett. 103 (2009) 111802 [arXiv:0907.0348] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Rashed, M. Duraisamy and A. Datta, Probing light pseudoscalar, axial vector states through η b τ + τ , Phys. Rev. D 82 (2010) 054031 [arXiv:1004.5419] [INSPIRE].

    ADS  Google Scholar 

  21. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  22. C. Quigg and J.L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rept. 56 (1979) 167 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Leibovich, Factorization and resummation for quarkonium at hadronic colliders, in Spring World Congress on Engineering and Technology (SCET), http://147.96.27.42/getFile.py/access?contribId=44&resId=0&materialId=slides&confId=4, Xi’an China May 27–30 2012.

  24. S. Fleming, A.K. Leibovich, T. Mehen and I.Z. Rothstein, The systematics of quarkonium production at the LHC and double parton fragmentation, arXiv:1207.2578 [INSPIRE].

  25. G.T. Bodwin, E. Braaten, T.C. Yuan and G.P. Lepage, P wave charmonium production in B meson decays, Phys. Rev. D 46 (1992) 3703 [hep-ph/9208254] [INSPIRE].

    ADS  Google Scholar 

  26. K.-M. Cheung, W.-Y. Keung and T.C. Yuan, Color octet quarkonium production at the Z pole, Phys. Rev. Lett. 76 (1996) 877 [hep-ph/9509308] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P.L. Cho and A.K. Leibovich, Color octet quarkonia production, Phys. Rev. D 53 (1996) 150 [hep-ph/9505329] [INSPIRE].

    ADS  Google Scholar 

  28. P.L. Cho and A.K. Leibovich, Color octet quarkonia production. 2, Phys. Rev. D 53 (1996) 6203 [hep-ph/9511315] [INSPIRE].

    ADS  Google Scholar 

  29. Y.-J. Zhang, Y.-Q. Ma, K. Wang and K.-T. Chao, QCD radiative correction to color-octet J/ψ inclusive production at B factories, Phys. Rev. D 81 (2010) 034015 [arXiv:0911.2166] [INSPIRE].

    ADS  Google Scholar 

  30. Y.-Q. Ma, K. Wang and K.-T. Chao, A complete NLO calculation of the J/ψ and ψ production at hadron colliders, Phys. Rev. D 84 (2011) 114001 [arXiv:1012.1030] [INSPIRE].

    ADS  Google Scholar 

  31. M. Butenschoen and B.A. Kniehl, World data of J/psi production consolidate NRQCD factorization at NLO, Phys. Rev. D 84 (2011) 051501 [arXiv:1105.0820] [INSPIRE].

    ADS  Google Scholar 

  32. M. Butenschoen and B.A. Kniehl, Probing nonrelativistic QCD factorization in polarized J/ψ photoproduction at next-to-leading order, Phys. Rev. Lett. 107 (2011) 232001 [arXiv:1109.1476] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Wang, Y.-Q. Ma and K.-T. Chao, \( Y \)(1S) prompt production at the Tevatron and LHC in nonrelativistic QCD, Phys. Rev. D 85 (2012) 114003 [arXiv:1202.6012] [INSPIRE].

    ADS  Google Scholar 

  34. S. Fleming, I. Rothstein and A.K. Leibovich, Power counting and effective field theory for charmonium, Phys. Rev. D 64 (2001) 036002 [hep-ph/0012062] [INSPIRE].

    ADS  Google Scholar 

  35. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

    Article  ADS  Google Scholar 

  36. N. Brambilla, E. Mereghetti and A. Vairo, Electromagnetic quarkonium decays at order v 7, JHEP 08 (2006) 039 [Erratum ibid. 04 (2011) 058] [hep-ph/0604190] [INSPIRE].

  37. D. Ebert, R. Faustov and V. Galkin, Spectroscopy and Regge trajectories of heavy quarkonia and B c mesons, Eur. Phys. J. C 71 (2011) 1825 [arXiv:1111.0454] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Dobbs, Z. Metreveli, K.K. Seth, A. Tomaradze and T. Xiao, Observation of η b (2S) in \( Y \)(2S) → γη b (2S), η b (2S) → hadrons and confirmation of η b (1S), arXiv:1204.4205 [INSPIRE].

  39. M. Beneke, I. Rothstein and M.B. Wise, Kinematic enhancement of nonperturbative corrections to quarkonium production, Phys. Lett. B 408 (1997) 373 [hep-ph/9705286] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].

    Google Scholar 

  41. I.Z. Rothstein and M.B. Wise, The octet structure function and radiative quarkonia decays, Phys. Lett. B 402 (1997) 346 [hep-ph/9701404] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Pineda, Review of heavy quarkonium at weak coupling, Prog. Part. Nucl. Phys. 67 (2012) 735 [arXiv:1111.0165] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Drees and K.-I. Hikasa, Heavy quark thresholds in Higgs physics, Phys. Rev. D 41 (1990) 1547 [INSPIRE].

    ADS  Google Scholar 

  45. W. Buchmüller, Y.J. Ng and S.-H. Henry Tye, Hyperfine splittings in heavy quark systems, Phys. Rev. D 24 (1981) 3003 [INSPIRE].

    ADS  Google Scholar 

  46. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Barbieri, R. Gatto, R. Kogerler and Z. Kunszt, Meson hyperfine splittings and leptonic decays, Phys. Lett. B 57 (1975) 455 [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Barbieri, R. Gatto and E. Remiddi, QCD radiative corrections to hyperfine splitting in quarkonium, Phys. Lett. B 106 (1981) 497 [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Gupta, C. Suchyta and W. Repko, Nonsingular potential model for heavy quarkonia, Phys. Rev. D 39 (1989) 974 [INSPIRE].

    ADS  Google Scholar 

  50. B. Grinstein and I. Rothstein, Errors in lattice extractions of α s due to use of unphysical pion masses, Phys. Lett. B 385 (1996) 265 [hep-ph/9605260] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Y.-P. Kuang, QCD multipole expansion and hadronic transitions in heavy quarkonium systems, Front. Phys. China 1 (2006) 19 [hep-ph/0601044] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Voloshin, On dynamics of heavy quarks in nonperturbative QCD vacuum, Nucl. Phys. B 154 (1979) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Bhanot, W. Fischler and S. Rudaz, A multipole expansion and the Casimir-Polder effect in quantum chromodynamics, Nucl. Phys. B 155 (1979) 208 [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.E. Peskin, Short distance analysis for heavy quark systems. 1. Diagrammatics, Nucl. Phys. B 156 (1979) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. G. Bhanot and M.E. Peskin, Short distance analysis for heavy quark systems. 2. Applications, Nucl. Phys. B 156 (1979) 391 [INSPIRE].

    Article  ADS  Google Scholar 

  56. M.B. Voloshin and V.I. Zakharov, Measuring QCD anomalies in hadronic transitions between onium states, Phys. Rev. Lett. 45 (1980) 688 [INSPIRE].

    Article  ADS  Google Scholar 

  57. T.-M. Yan, Hadronic transitions between heavy quark states in quantum chromodynamics, Phys. Rev. D 22 (1980) 1652 [INSPIRE].

    ADS  Google Scholar 

  58. C. Meng and K.-T. Chao, Scalar resonance contributions to the dipion transition rates of \( Y \)(4S, 5S) in the re-scattering model, Phys. Rev. D 77 (2008) 074003 [arXiv:0712.3595] [INSPIRE].

    ADS  Google Scholar 

  59. C. Meng and K.-T. Chao, \( Y \)(4S, 5S) → \( Y \)(1S)η transitions in the rescattering model and the new BaBar measurement, Phys. Rev. D 78 (2008) 074001 [arXiv:0806.3259] [INSPIRE].

    ADS  Google Scholar 

  60. Belle collaboration, I. Adachi, Observation of two charged bottomonium-like resonances, arXiv:1105.4583 [INSPIRE].

  61. Belle collaboration, A. Bondar et al., Observation of two charged bottomonium-like resonances in \( Y \)(5S) decays, Phys. Rev. Lett. 108 (2012) 122001 [arXiv:1110.2251] [INSPIRE].

    Article  ADS  Google Scholar 

  62. Belle collaboration, I. Adachi et al., Evidence for a \( Z_b^0 \)(10610) in Dalitz analysis of \( Y \)(5S) → \( Y \)(nS)π 0 π 0, arXiv:1207.4345 [INSPIRE].

  63. A. Bondar, A. Garmash, A. Milstein, R. Mizuk and M. Voloshin, Heavy quark spin structure in Z b resonances, Phys. Rev. D 84 (2011) 054010 [arXiv:1105.4473] [INSPIRE].

    ADS  Google Scholar 

  64. M. Voloshin, Radiative transitions from \( Y \)(5S) to molecular bottomonium, Phys. Rev. D 84 (2011) 031502 [arXiv:1105.5829] [INSPIRE].

    ADS  Google Scholar 

  65. T. Mehen and J.W. Powell, Heavy quark symmetry predictions for weakly bound B-meson molecules, Phys. Rev. D 84 (2011) 114013 [arXiv:1109.3479] [INSPIRE].

    ADS  Google Scholar 

  66. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs boson: jet substructure techniques for searching for Higgsdecay into gluons, Phys. Rev. D 84 (2011) 074022 [arXiv:1006.1650] [INSPIRE].

    ADS  Google Scholar 

  68. D.E. Kaplan and M. McEvoy, Associated production of non-standard Higgs bosons at the LHC, Phys. Rev. D 83 (2011) 115004 [arXiv:1102.0704] [INSPIRE].

    ADS  Google Scholar 

  69. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].

    ADS  Google Scholar 

  70. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Katz.

Additional information

ArXiv ePrint: 1204.6032

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgart, M., Katz, A. Implications of a new light scalar near the bottomonium regime. J. High Energ. Phys. 2012, 133 (2012). https://doi.org/10.1007/JHEP08(2012)133

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)133

Keywords

Navigation