Skip to main content
Log in

The singlet scalar as FIMP dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The singlet scalar model is a minimal extension of the Standard Model that can explain the dark matter. We point out that in this model the dark matter constraint can be satisfied not only in the already considered WIMP regime but also, for much smaller couplings, in the Feebly Interacting Massive Particle (FIMP) regime. In it, dark matter particles are slowly produced in the early Universe but are never abundant enough to reach thermal equilibrium or annihilate among themselves. This alternative framework is as simple and predictive as the WIMP scenario but it gives rise to a completely different dark matter phenomenology. After reviewing the calculation of the dark matter relic density in the FIMP regime, we study in detail the evolution of the dark matter abundance in the early Universe and the predicted relic density as a function of the parameters of the model. A new dark matter compatible region of the singlet model is identified, featuring couplings of order 10−11 to 10−12 for singlet masses in the GeV to TeV range. As a consequence, no signals at direct or indirect detection experiments are expected. The relevance of this new viable region for the correct interpretation of recent experimental bounds is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [SPIRES].

    Article  ADS  Google Scholar 

  2. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [SPIRES].

    Article  ADS  Google Scholar 

  3. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].

    ADS  Google Scholar 

  4. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].

    Article  ADS  Google Scholar 

  5. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].

    ADS  Google Scholar 

  6. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].

    ADS  Google Scholar 

  7. L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [SPIRES].

    Article  ADS  Google Scholar 

  8. G. Bertone, The moment of truth for WIMP Dark Matter, Nature 468 (2010) 389 [arXiv:1011.3532] [SPIRES].

    Article  ADS  Google Scholar 

  9. K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf.Proc. 805 (2006) 30 [hep-ph/0511003] [SPIRES].

    Article  ADS  Google Scholar 

  10. J.L. Feng, A. Rajaraman and F. Takayama, Superweakly-interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [SPIRES].

    Article  ADS  Google Scholar 

  11. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [SPIRES].

    Article  ADS  Google Scholar 

  12. C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [SPIRES].

    ADS  Google Scholar 

  13. A. Goudelis, Y. Mambrini and C. Yaguna, Antimatter signals of singlet scalar dark matter, JCAP 12 (2009) 008 [arXiv:0909.2799] [SPIRES].

    ADS  Google Scholar 

  14. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  15. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].

    Article  ADS  Google Scholar 

  16. XENON100 collaborartion, E. Aprile et al., Dark matter results from 100 live days of X ENON 100 data, submitted to Phys. Rev. Lett. (2011), arXiv:1104.2549 [SPIRES].

  17. M. Farina et al. Implications of XENON 100 results for dark matter models and for the LHC, arXiv:1104.3572 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Yaguna.

Additional information

ArXiv ePrint: 1105.1654

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaguna, C.E. The singlet scalar as FIMP dark matter. J. High Energ. Phys. 2011, 60 (2011). https://doi.org/10.1007/JHEP08(2011)060

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)060

Keywords

Navigation