Skip to main content
Log in

Probing new physics with the B s μ + μ time-dependent rate

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The B s μ + μ decay plays an outstanding role in tests of the Standard Model and physics beyond it. The LHCb collaboration has recently reported the first evidence for this decay at the 3.5 σ level, with a branching ratio in the ballpark of the Standard Model prediction. Thanks to the recently established sizable decay width difference of the B s system, another observable, \( \mathcal{A}_{{\varDelta \varGamma}}^{{\mu \mu }} \), is available, which can be extracted from the time- dependent untagged B s μ + μ rate. If tagging information is available, a CP-violating asymmetry, S μμ , can also be determined. These two observables exhibit sensitivity to New Physics that is complementary to the branching ratio. We define and analyse scenarios in which these quantities allow us to discriminate between model-independent effective operators and their CP-violating phases. In this context we classify a selection of popular New Physics models into the considered scenarios. Furthermore, we consider specific models with tree-level FCNCs mediated by a heavy neutral gauge boson, pseudoscalar or scalar, finding striking differences in the predictions of these scenarios for the observables considered and the correlations among them. We update the Standard Model prediction for the time-integrated branching ratio taking the subtle decay width difference effects into account. We find (3.56 ± 0.18) × 10−9, and discuss the error budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Buras and J. Girrbach, BSM models facing the recent LHCb data: a first look, Acta Phys. Polon. B 43 (2012) 1427 [arXiv:1204.5064] [INSPIRE].

    Article  Google Scholar 

  2. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  3. HPQCD collaboration, R. Dowdall, C. Davies, R. Horgan, C. Monahan and J. Shigemitsu, B-meson decay constants from improved lattice NRQCD and physical u, d, s and c sea quarks, arXiv:1302.2644 [INSPIRE].

  4. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  5. K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  6. LHCb collaboration, G. Raven, Measurement of the CP-violation phase ϕ s in the B s system at LHCb, arXiv:1212.4140 [INSPIRE].

  7. J. Albrecht, Brief review of the searches for the rare decays \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and B 0μ + μ , Mod. Phys. Lett. A 27 (2012) 1230028 [arXiv:1207.4287] [INSPIRE].

    ADS  Google Scholar 

  8. LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  9. K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  10. C.-S. Huang and W. Liao, Search for new physics via CP-violation in B d,s → ℓ + , Phys. Lett. B 525 (2002) 107 [hep-ph/0011089] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. C.-S. Huang and W. Liao, (g − 2) μ and CP asymmetries in \( B_{d,s}^0\to {\ell^{+}}{\ell^{-}} \) and bsγ in SUSY models, Phys. Lett. B 538 (2002) 301 [hep-ph/0201121] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].

    ADS  Google Scholar 

  13. P.H. Chankowski, J. Kalinowski, Z. Was and M. Worek, CP violation in \( B_d^0\to {\tau^{+}}{\tau^{-}} \) decays, Nucl. Phys. B 713 (2005) 555 [hep-ph/0412253] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A.J. Buras, F. De Fazio and J. Girrbach, The anatomy of Zand Z with flavour changing neutral currents in the flavour precision era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Fleischer, R. Knegjens and G. Ricciardi, Anatomy of \( B_{s,d}^0\to {J \left/ {{\psi {f_0}\left( {980} \right)}} \right.} \), Eur. Phys. J. C 71 (2011) 1832 [arXiv:1109.1112] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Fleischer, Penguin effects in ϕ d,s determinations, arXiv:1212.2792 [INSPIRE].

  17. W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Beaujean, C. Bobeth, D. van Dyk and C. Wacker, Bayesian fit of exclusive \( b\to s\overline{\ell}\ell \) decays: the Standard Model operator basis, JHEP 08 (2012) 030 [arXiv:1205.1838] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Buchalla, A.J. Buras and M.K. Harlander, Penguin box expansion: flavor changing neutral current processes and a heavy top quark, Nucl. Phys. B 349 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Buchalla and A.J. Buras, The rare decays \( k\to \pi \nu \overline{\nu},\,B\to X\nu \overline{\nu} \) and B + : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].

    ADS  Google Scholar 

  22. R. Fleischer, On branching ratios of B s decays and the search for new physics in \( B_s^0\to {\mu^{+}}{\mu^{-}} \), arXiv:1208.2843 [INSPIRE].

  23. I. Dunietz, R. Fleischer and U. Nierste, In pursuit of new physics with B s decays, Phys. Rev. D 63 (2001) 114015 [hep-ph/0012219] [INSPIRE].

    ADS  Google Scholar 

  24. R. Fleischer, N. Serra and N. Tuning, A new strategy for B s branching ratio measurements and the search for new physics in \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. D 82 (2010) 034038 [arXiv:1004.3982] [INSPIRE].

    ADS  Google Scholar 

  25. M. Misiak, Rare B-meson decays, arXiv:1112.5978 [INSPIRE].

  26. A.J. Buras, Relations between ΔM s,d and B s,d \( \mu \overline{\mu} \) in models with minimal flavor violation, Phys. Lett. B 566 (2003) 115 [hep-ph/0303060] [INSPIRE].

    ADS  Google Scholar 

  27. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  28. 2+1 flavor lattice QCD averages webpage, http://latticeaverages.org/.

  29. A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].

    Google Scholar 

  30. D. Becirevic, N. Kosnik, F. Mescia and E. Schneider, Complementarity of the constraints on new physics from B s → μ + μ and from B → Kℓ + decays, Phys. Rev. D 86 (2012) 034034 [arXiv:1205.5811] [INSPIRE].

    ADS  Google Scholar 

  31. A.J. Buras, F. De Fazio, J. Girrbach, R. Knegjens and M. Nagai, The anatomy of neutral scalars with FCNCs in the flavour precision era, arXiv:1303.3723 [INSPIRE].

  32. A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    ADS  Google Scholar 

  33. A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].

    ADS  Google Scholar 

  34. M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the littlest Higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].

    Google Scholar 

  35. A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The anatomy of quark flavour observables in 331 models in the flavour precision era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D.M. Straub, Anatomy of flavour-changing Z couplings in models with partial compositeness, arXiv:1302.4651 [INSPIRE].

  40. D. Guadagnoli and G. Isidori, BR(B s μ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].

  41. A.J. Buras et al., Patterns of flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H.E. Logan and U. Nierste, B s,d → ℓ + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  44. K. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Isidori and A. Retico, Scalar flavor changing neutral currents in the large tan β limit, JHEP 11 (2001) 001 [hep-ph/0110121] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, sμ + μ and BX s γ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    Article  ADS  Google Scholar 

  49. CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].

    ADS  Google Scholar 

  50. W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A.J. Buras, G. Isidori and P. Paradisi, EDMs versus CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B 694 (2011) 402 [arXiv:1007.5291] [INSPIRE].

    ADS  Google Scholar 

  52. E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [INSPIRE].

    ADS  Google Scholar 

  53. A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fleischer.

Additional information

ArXiv ePrint: 1303.3820

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buras, A.J., Fleischer, R., Girrbach, J. et al. Probing new physics with the B s μ + μ time-dependent rate. J. High Energ. Phys. 2013, 77 (2013). https://doi.org/10.1007/JHEP07(2013)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)077

Keywords

Navigation