Skip to main content
Log in

LHC constraints on two-Higgs doublet models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A new Higgs-like boson with mass around 126 GeV has recently been discovered at the LHC. The available data on this new particle is analyzed within the context of two-Higgs doublet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving cases, and a few particular limits with a reduced number of free parameters, such as the usual models based on discrete \( {{\mathcal{Z}}_2} \) symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.

  5. CMS collaboration, Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CMS collaboration, On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  7. ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ (*) → 4ℓ with 4.8fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  8. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ (*) → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-169 (2012).

  9. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  10. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).

  11. CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  12. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015.

  13. CDF, D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  14. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  15. CDF, D0 collaborations, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D0 collaboration, V.M. Abazov et al., Search for the standard model Higgs boson in ℓν + jets final states in 9.7 fb −1 of \( p\overline{p} \) collisions with the D0 detector, arXiv:1301.6122 [INSPIRE].

  17. CDF, D0 collaboration, Tevatron New Physics, Higgs Working Group, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1207.0449 [INSPIRE].

  18. D0 collaboration, V.M. Abazov et al., Search for a Higgs boson in diphoton final states with the D0 detector in 9.6 fb −1 of \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, arXiv:1301.5358 [INSPIRE].

  19. CDF collaboration, T. Aaltonen et al., Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111802 [arXiv:1207.1707] [INSPIRE].

    Article  ADS  Google Scholar 

  20. CDF collaboration, T. Aaltonen et al., Updated search for the standard model Higgs boson in events with jets and missing transverse energy using the full CDF data set, arXiv:1301.4440 [INSPIRE].

  21. CDF collaboration, T. Aaltonen et al., Combination of searches for the Higgs boson using the full CDF data set, arXiv:1301.6668 [INSPIRE].

  22. D0 collaboration, V.M. Abazov et al., Combined search for the standard model Higgs boson decaying to \( b\overline{b} \) using the D0 Run II data set, Phys. Rev. Lett. 109 (2012) 121802 [arXiv:1207.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  23. ATLAS collaboration, Combined search for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].

    ADS  Google Scholar 

  24. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  25. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  31. A. Azatov, R. Contino, D. Del Re, J. Galloway, M. Grassi and S. Rahatlou, Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  33. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  34. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  35. E. Masso and V. Sanz, Limits on Anomalous Couplings of the Higgs to Electroweak Gauge Bosons from LEP and LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].

    ADS  Google Scholar 

  36. J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs Precision (Higgcision) Era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Pich, Flavour constraints on multi-Higgs-doublet models: Yukawa alignment, Nucl. Phys. Proc. Suppl. 209 (2010) 182 [arXiv:1010.5217] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].

    ADS  Google Scholar 

  40. M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Jung, A. Pich and P. Tuzon, The BX s γ Rate and CP Asymmetry within the Aligned Two-Higgs-Doublet Model, Phys. Rev. D 83 (2011) 074011 [arXiv:1011.5154] [INSPIRE].

    ADS  Google Scholar 

  42. M. Jung, X.-Q. Li and A. Pich, Exclusive radiative B-meson decays within the aligned two-Higgs-doublet model, JHEP 10 (2012) 063 [arXiv:1208.1251] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (*) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

  46. N. Craig and S. Thomas, Exclusive Signals of an Extended Higgs Sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  47. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  48. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  49. A. Barroso, P. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].

    ADS  Google Scholar 

  50. G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC Observing the Pseudo-scalar State of a Two-Higgs Doublet Model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  51. A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs Doublet Model in light of the Standard Model Hτ + τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].

    ADS  Google Scholar 

  52. A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  53. E. Gabrielli, B. Mele and M. Raidal, Has a Fermiophobic Higgs Boson been Detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  54. K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    ADS  Google Scholar 

  55. G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs Couplings at the End of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Article  Google Scholar 

  56. C.-Y. Chen and S. Dawson, Exploring Two Higgs Doublet Models Through Higgs Production, arXiv:1301.0309 [INSPIRE].

  57. S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  58. H. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  59. L.J. Hall and M.B. Wise, Flavor changing Higgs - boson couplings, Nucl. Phys. B 187 (1981) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  60. J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].

    ADS  Google Scholar 

  61. V.D. Barger, J. Hewett and R. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].

    ADS  Google Scholar 

  62. Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Akeroyd and W.J. Stirling, Light charged Higgs scalars at high-energy e + e colliders, Nucl. Phys. B 447 (1995) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Akeroyd, Nonminimal neutral Higgs bosons at LEP-2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [INSPIRE].

    ADS  Google Scholar 

  65. A. Akeroyd, Fermiophobic and other nonminimal neutral Higgs bosons at the LHC, J. Phys. G 24 (1998) 1983 [hep-ph/9803324] [INSPIRE].

    ADS  Google Scholar 

  66. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  67. N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  68. E. Ma, Utility of a Special Second Scalar Doublet, Mod. Phys. Lett. A 23 (2008) 647 [arXiv:0802.2917] [INSPIRE].

    ADS  Google Scholar 

  69. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  70. W. Altmannshofer, S. Gori and G.D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  71. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider Data, arXiv:1210.4922 [INSPIRE].

  72. E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a vectophobic Two-Higgs-Doublet-Model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].

    ADS  Google Scholar 

  73. G. Branco, W. Grimus and L. Lavoura, Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett. B 380 (1996) 119 [hep-ph/9601383] [INSPIRE].

    ADS  Google Scholar 

  74. F. Botella, G. Branco and M. Rebelo, Minimal Flavour Violation and Multi-Higgs Models, Phys. Lett. B 687 (2010) 194 [arXiv:0911.1753] [INSPIRE].

    ADS  Google Scholar 

  75. F. Botella, G. Branco, M. Nebot and M. Rebelo, Two-Higgs Leptonic Minimal Flavour Violation, JHEP 10 (2011) 037 [arXiv:1102.0520] [INSPIRE].

    Article  ADS  Google Scholar 

  76. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    Article  ADS  Google Scholar 

  78. P. Ferreira, L. Lavoura and J.P. Silva, Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett. B 688 (2010) 341 [arXiv:1001.2561] [INSPIRE].

    ADS  Google Scholar 

  79. C.B. Braeuninger, A. Ibarra and C. Simonetto, Radiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignment, Phys. Lett. B 692 (2010) 189 [arXiv:1005.5706] [INSPIRE].

    ADS  Google Scholar 

  80. H. Serodio, Yukawa Alignment in a Multi Higgs Doublet Model: An effective approach, Phys. Lett. B 700 (2011) 133 [arXiv:1104.2545] [INSPIRE].

    ADS  Google Scholar 

  81. I. de Medeiros Varzielas, Family symmetries and alignment in multi-Higgs doublet models, Phys. Lett. B 701 (2011) 597 [arXiv:1104.2601] [INSPIRE].

    ADS  Google Scholar 

  82. G. Cree and H.E. Logan, Yukawa alignment from natural flavor conservation, Phys. Rev. D 84 (2011) 055021 [arXiv:1106.4039] [INSPIRE].

    ADS  Google Scholar 

  83. M. Farina, C. Grojean and E. Salvioni, (Dys)Zphilia or a custodial breaking Higgs at the LHC, JHEP 07 (2012) 012 [arXiv:1205.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    Article  ADS  Google Scholar 

  85. S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    Article  ADS  Google Scholar 

  86. CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025.

  87. ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, ATLAS-CONF-2012-135 (2012).

  88. LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209-GeV, hep-ex/0107031 [INSPIRE].

  89. ALEPH, DELPHI, L3, OPAL, The LEP working group for Higgs boson searches collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C (2013) [arXiv:1301.6065] [INSPIRE].

  90. CDF collaboration, A. Abulencia et al., Search for charged Higgs bosons from top quark decays in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \)-TeV., Phys. Rev. Lett. 96 (2006) 042003 [hep-ex/0510065] [INSPIRE].

  91. D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].

    ADS  Google Scholar 

  92. ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012)039 [arXiv:1204.2760] [INSPIRE].

  93. CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

  94. M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].

    ADS  Google Scholar 

  95. B. Swiezewska and M. Krawczyk, Diphoton rate in the Inert Doublet Model with a 125 GeV Higgs boson, arXiv:1212.4100 [INSPIRE].

  96. L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  97. OPAL collaboration, G. Abbiendi et al., Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].

  98. M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  99. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.

  100. ATLAS collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9fb −1 of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079 (2012).

  101. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].

    ADS  Google Scholar 

  102. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  103. S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].

    Article  ADS  Google Scholar 

  104. P. Ferreira, H.E. Haber, R. Santos and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model, arXiv:1211.3131 [INSPIRE].

  105. J.F. Gunion, Y. Jiang and S. Kraml, Diagnosing Degenerate Higgs Bosons at 125 GeV, Phys. Rev. Lett. 110 (2013) 051801 [arXiv:1208.1817] [INSPIRE].

    Article  ADS  Google Scholar 

  106. Y. Grossman, Z. Surujon and J. Zupan, How to test for mass degenerate Higgs resonances, JHEP 03 (2013) 176 [arXiv:1301.0328] [INSPIRE].

    Article  ADS  Google Scholar 

  107. E. Accomando et al., Workshop on CP Studies and Non-Standard Higgs Physics, hep-ph/0608079 [INSPIRE].

  108. A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].

    Article  ADS  Google Scholar 

  109. J.R. Ellis, J.S. Lee and A. Pilaftsis, CERN LHC signatures of resonant CP-violation in a minimal supersymmetric Higgs sector, Phys. Rev. D 70 (2004) 075010 [hep-ph/0404167] [INSPIRE].

    ADS  Google Scholar 

  110. S. Choi, J. Kalinowski, Y. Liao and P. Zerwas, H/A Higgs mixing in CP-noninvariant supersymmetric theories, Eur. Phys. J. C 40 (2005) 555 [hep-ph/0407347] [INSPIRE].

    Article  ADS  Google Scholar 

  111. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  112. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.

  113. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tan beta, Phys. Rev. D 74 (2006) 015018 [hep-ph/0602242] [INSPIRE].

    ADS  Google Scholar 

  114. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  115. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  116. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  117. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Celis.

Additional information

ArXiv ePrint: 1302.4022

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celis, A., Ilisie, V. & Pich, A. LHC constraints on two-Higgs doublet models. J. High Energ. Phys. 2013, 53 (2013). https://doi.org/10.1007/JHEP07(2013)053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)053

Keywords

Navigation