Skip to main content
Log in

Non-equilibrium condensation process in a holographic superconductor

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the non-equilibrium condensation process in a holographic superconductor. When the temperature T is smaller than a critical temperature T c , there are two black hole solutions, the Reissner-Nordström-AdS black hole and a black hole with a scalar hair. In the boundary theory, they can be regarded as the supercooled normal phase and the superconducting phase, respectively. We consider perturbations on supercooled Reissner-Nordström-AdS black holes and study their non-linear time evolution to know about physical phenomena associated with rapidly-cooled superconductors. We find that, for T < T c , the initial perturbations grow exponentially and, eventually, spacetimes approach the hairy black holes. We also clarify how the relaxation process from a far-from-equilibrium state proceeds in the boundary theory by observing the time dependence of the superconducting order parameter. Finally, we study the time evolution of event and apparent horizons and discuss their correspondence with the entropy of the boundary theory. Our result gives a first step toward the holographic understanding of the non-equilibrium process in superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  5. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Mondello and N. Goldenfeld, Scaling and vortex dynamics after the quench of a system with a continuous symmetry, Phys. Rev. A 42 (1990) 5865 [SPIRES].

    ADS  Google Scholar 

  8. F. Liu, M. Mondello and N. Goldenfeld, Kinetics of the superconducting transition, Phys. Rev. Lett. 66 (1991) 3071 [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Mondello and N. Goldenfeld, Scaling and vortex-string dynamics in a three-dimensional system with a continuous symmetry, Phys. Rev. A 45 (1992) 657 [SPIRES].

    ADS  Google Scholar 

  10. M. Mondello and N. Goldenfeld, Scaling and vortex-string dynamics in a three-dimensional system with a continuous symmetry, Phys. Rev. A 45 (1992) 657 [SPIRES].

    ADS  Google Scholar 

  11. G.J. Stephens, L.M.A. Bettencourt and W.H. Zurek, Critical dynamics of gauge systems: Spontaneous vortex formation in 2D superconductors, Phys. Rev. Lett. 88 (2002) 137004 [cond-mat/0108127] [SPIRES].

    Article  ADS  Google Scholar 

  12. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  14. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  15. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP 08 (2008) 027 [arXiv:0803.3226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [SPIRES].

    ADS  Google Scholar 

  17. L. Alvarez-Gaumè, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].

    ADS  Google Scholar 

  19. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [SPIRES].

    Article  ADS  Google Scholar 

  20. S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].

  26. K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].

    ADS  Google Scholar 

  27. P. Basu, A. Mukherjee and H.H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  28. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. C.P. Herzog and A. Yarom, Sound modes in holographic superfluids, Phys. Rev. D 80 (2009) 106002 [arXiv:0906.4810] [SPIRES].

    ADS  Google Scholar 

  30. K. Maeda, S. Fujii and J.-i. Koga, The final fate of instability of Reissner-Nordstróm-anti-de Sitter black holes by charged complex scalar fields, Phys. Rev. D 81 (2010) 124020 [arXiv:1003.2689] [SPIRES].

    ADS  Google Scholar 

  31. R.A. Konoplya, Decay of charged scalar field around a black hole: Quasinormal modes of R-N, R-N-AdS and dilaton black hole, Phys. Rev. D 66 (2002) 084007 [gr-qc/0207028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Kinoshita, S. Mukohyama, S. Nakamura and K.-y. Oda, A Holographic Dual of Bjorken Flow, Prog. Theor. Phys. 121 (2009) 121 [arXiv:0807.3797] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  35. P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [SPIRES].

    Article  ADS  Google Scholar 

  36. S.R. Das, T. Nishioka and T. Takayanagi, Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT, arXiv:1005.3348 [SPIRES].

  37. C. Wu, K. Sun, E. Fradkin and S.-C. Zhang, Fermi liquid instabilities in the spin channel, Phys. Rev. B 75 (2007) 115103 [SPIRES].

    ADS  Google Scholar 

  38. J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity, arXiv:0911.2821 [SPIRES].

  39. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  Google Scholar 

  40. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, arXiv:0911.3632 [SPIRES].

  41. T. Hartman and S.A. Hartnoll, Cooper pairing near charged black holes, JHEP 06 (2010) 005 [arXiv:1003.1918] [SPIRES].

    Article  Google Scholar 

  42. Y.M. Galperin, V.L. Gurevich, V.I. Kozub and A.L. Shelankov, Theory of thermoelectric phenomena in superconductors, Phys. Rev. B 65 (2002) 064531.

    ADS  Google Scholar 

  43. O. Ozen and R. Narayanan, The physics of evaporative and convective instabilities in bilayer systems: Linear theory, Phys. Fluids 16 (2004) 4644.

    Article  ADS  Google Scholar 

  44. O. Ozen and R. Narayanan, The physics of evaporative instability in bilayer systems: Weak nonlinear theory, Phys. Fluids 16 (2004) 4653.

    Article  ADS  Google Scholar 

  45. T. Albash and C.V. Johnson, Vortex and Droplet Engineering in Holographic Superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [SPIRES].

    ADS  Google Scholar 

  46. M. Montull, A. Pomarol and P.J. Silva, The Holographic Superconductor Vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Yoshino and M. Shibata, Higher-dimensional numerical relativity: Formulation and code tests, Phys. Rev. D 80 (2009) 084025 [arXiv:0907.2760] [SPIRES].

    ADS  Google Scholar 

  48. K.-i. Nakao, H. Abe, H. Yoshino and M. Shibata, Maximal slicing of D-dimensional spherically-symmetric vacuum spacetime, Phys. Rev. D 80 (2009) 084028 [arXiv:0908.0799] [SPIRES].

    ADS  Google Scholar 

  49. M. Shibata and H. Yoshino, Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev. D 81 (2010) 021501 [arXiv:0912.3606] [SPIRES].

    ADS  Google Scholar 

  50. M. Zilhao et al., Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests, Phys. Rev. D 81 (2010) 084052 [arXiv:1001.2302] [SPIRES].

    ADS  Google Scholar 

  51. H. Witek et al., Black holes in a box: towards the numerical evolution of black holes in AdS, J. Phys. Conf. Ser. 229 (2010) 012072 [arXiv:1004.4633] [SPIRES].

    Article  ADS  Google Scholar 

  52. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiju Murata.

Additional information

ArXiv ePrint: 1005.0633

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, K., Kinoshita, S. & Tanahashi, N. Non-equilibrium condensation process in a holographic superconductor. J. High Energ. Phys. 2010, 50 (2010). https://doi.org/10.1007/JHEP07(2010)050

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)050

Keywords

Navigation