Skip to main content
Log in

Resonance at 125 GeV: Higgs or dilaton/radion?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the possibility that the new particle that has been observed at 125 GeV is not the Standard Model (SM) Higgs, but instead the dilaton associated with an approximate conformal symmetry that has been spontaneously broken. We focus on dilatons that arise from theories of technicolor, or from theories of the Higgs as a pseudo-Nambu-Goldstone boson (pNGB), that involve strong conformal dynamics in the ultra-violet. In the pNGB case, we are considering a framework where the Higgs particle is significantly heavier than the dilaton and has therefore not yet been observed. In each of the technicolor and pNGB scenarios, we study both the case when the SM fermions and gauge bosons are elementary, and the case when they are composites of the strongly interacting sector. Our analysis incorporates conformal symmetry violating effects, which are necessarily present since the dilaton is not massless, and is directly applicable to a broad class of models that stabilize the weak scale and involve strong conformal dynamics. Since the AdS/CFT correspondence relates the radion in Randall-Sundrum (RS) models to the dilaton, our results also apply to RS models with the SM fields localized on the infrared brane, or in the bulk. We identify the parameters that can be used to distinguish the dilatons associated with the several different classes of theories being considered from each other, and from the SM Higgs. We perform a fit to all the available data from several experiments and highlight the key observations to extract these parameters. We find that at present, both the technicolor and pNGB dilaton scenarios provide a good fit to the data, comparable to the SM Higgs. We indicate the future observations that will help to corroborate or falsify each scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ~125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  10. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ~125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  14. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  15. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  17. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].

    ADS  Google Scholar 

  18. E. Gabrielli, K. Kannike, B. Mele, A. Racioppi and M. Raidal, Fermiophobic Higgs boson and supersymmetry, Phys. Rev. D 86 (2012) 055014 [arXiv:1204.0080] [INSPIRE].

    ADS  Google Scholar 

  19. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  21. H.K. Dreiner, J.S. Kim and O. Lebedev, First LHC constraints on neutralinos, Phys. Lett. B 715 (2012) 199 [arXiv:1206.3096] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of h → γγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Kraml et al., Searches for new physics: Les Houches recommendations for the presentation of LHC results, Eur. Phys. J. C 72 (2012) 1976 [arXiv:1203.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  24. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  25. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  26. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553–554] [hep-ph/0203079] [INSPIRE].

  27. H. Georgi and A. Pais, Calculability and naturalness in gauge theories, Phys. Rev. D 10 (1974) 539 [INSPIRE].

    ADS  Google Scholar 

  28. H. Georgi and A. Pais, Vacuum symmetry and the pseudogoldstone phenomenon, Phys. Rev. D 12 (1975) 508 [INSPIRE].

    ADS  Google Scholar 

  29. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  30. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  31. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  32. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T.W. Appelquist, D. Karabali and L. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Appelquist and L. Wijewardhana, Chiral hierarchies and chiral perturbations in technicolor, Phys. Rev. D 35 (1987) 774 [INSPIRE].

    ADS  Google Scholar 

  37. T. Appelquist and L. Wijewardhana, Chiral hierarchies from slowly running couplings in technicolor theories, Phys. Rev. D 36 (1987) 568 [INSPIRE].

    ADS  Google Scholar 

  38. A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. C. Isham, A. Salam and J. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. B. Zumino, Lectures on elementary particles and quantum field theory, S. Deser et. al. eds., MIT Press, U.S.A. (1970).

  41. J.R. Ellis, Aspects of conformal symmetry and chirality, Nucl. Phys. B 22 (1970) 478 [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  44. L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].

    ADS  Google Scholar 

  45. Z. Chacko and R.K. Mishra, Effective theory of a light dilaton, arXiv:1209.3022 [INSPIRE].

  46. J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].

    ADS  Google Scholar 

  47. B. Coleppa, T. Gregoire and H.E. Logan, Dilaton constraints and LHC prospects, Phys. Rev. D 85 (2012) 055001 [arXiv:1111.3276] [INSPIRE].

    ADS  Google Scholar 

  48. B.A. Campbell, J. Ellis and K.A. Olive, Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons, JHEP 03 (2012) 026 [arXiv:1111.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  49. H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].

    ADS  Google Scholar 

  50. V. Barger, M. Ishida and W.-Y. Keung, Differentiating the Higgs boson from the dilaton and the radion at hadron colliders, Phys. Rev. Lett. 108 (2012) 101802 [arXiv:1111.4473] [INSPIRE].

    Article  ADS  Google Scholar 

  51. V. Barger, M. Ishida and W.-Y. Keung, Dilaton at the LHC, Phys. Rev. D 85 (2012) 015024 [arXiv:1111.2580] [INSPIRE].

    ADS  Google Scholar 

  52. D. Elander and M. Piai, The decay constant of the holographic techni-dilaton and the 125 GeV boson, arXiv:1208.0546 [INSPIRE].

  53. S. Matsuzaki and K. Yamawaki, Is 125 GeV techni-dilaton found at LHC?, Phys. Lett. B 719 (2013) 378 [arXiv:1207.5911] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Matsuzaki and K. Yamawaki, Discovering 125 GeV techni-dilaton at LHC, Phys. Rev. D 86 (2012) 035025 [arXiv:1206.6703] [INSPIRE].

    ADS  Google Scholar 

  55. S. Matsuzaki and K. Yamawaki, Techni-dilaton at 125 GeV, Phys. Rev. D 85 (2012) 095020 [arXiv:1201.4722] [INSPIRE].

    ADS  Google Scholar 

  56. S. Matsuzaki and K. Yamawaki, Holographic techni-dilaton at 125 GeV, Phys. Rev. D 86 (2012) 115004 [arXiv:1209.2017] [INSPIRE].

    ADS  Google Scholar 

  57. B. Grzadkowski, J.F. Gunion and M. Toharia, Higgs-radion interpretation of the LHC data?, Phys. Lett. B 712 (2012) 70 [arXiv:1202.5017] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Cheung and T.-C. Yuan, Could the excess seen at 124–126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  60. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  61. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  66. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  67. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  68. C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].

    ADS  Google Scholar 

  69. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].

    Article  ADS  Google Scholar 

  70. G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

    ADS  Google Scholar 

  72. T.G. Rizzo, Radion couplings to bulk fields in the Randall-Sundrum model, JHEP 06 (2002) 056 [hep-ph/0205242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].

    ADS  Google Scholar 

  74. C. Isham, A. Salam and J. Strathdee, Spontaneous breakdown of conformal symmetry, Phys. Lett. B 31 (1970) 300 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. J.R. Ellis, Phenomenological actions for spontaneously-broken conformal symmetry, Nucl. Phys. B 26 (1971) 536 [INSPIRE].

    Article  ADS  Google Scholar 

  76. R. Rattazzi, The naturally light dilaton, talk at Planck 2010, May 31-June 4, Lisbon, Portugal (2010).

  77. T. Appelquist and Y. Bai, A light dilaton in walking gauge theories, Phys. Rev. D 82 (2010) 071701 [arXiv:1006.4375] [INSPIRE].

    ADS  Google Scholar 

  78. Y. Tang, Implications of LHC searches for massive graviton, JHEP 08 (2012) 078 [arXiv:1206.6949] [INSPIRE].

    Article  ADS  Google Scholar 

  79. Y. Tang, Comment onCould the excess seen at 124–126 GeV be due to the Randall-Sundrum radion?’, arXiv:1204.6145 [INSPIRE].

  80. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  83. A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  84. D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    Article  ADS  Google Scholar 

  85. D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  87. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  88. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  89. CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020 (2012).

  90. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  91. LHC Higgs cross section working group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  92. Tevatron New Physics Higgs Working Group, CDF, D0 collaboration, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  93. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).

  94. CMS collaboration, Combination of SM, SM4, FP Higgs boson searches, CMS-PAS-HIG-12-008 (2012).

  95. ATLAS collaboration, Combined search for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].

    ADS  Google Scholar 

  96. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  97. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the HZZ (*) → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-092 (2012).

  98. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the HWW (*)ℓνℓν channel with the ATLAS detector, ATLAS-CONF-2012-098 (2012).

  99. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A higgslike dilaton, arXiv:1209.3299 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Franceschini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacko, Z., Franceschini, R. & Mishra, R.K. Resonance at 125 GeV: Higgs or dilaton/radion?. J. High Energ. Phys. 2013, 15 (2013). https://doi.org/10.1007/JHEP04(2013)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)015

Keywords

Navigation