Skip to main content
Log in

Holographic conductivity in disordered systems

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  7. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  8. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  9. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].

  10. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  13. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  14. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [SPIRES].

    Article  ADS  Google Scholar 

  20. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  21. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  22. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [SPIRES].

  23. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  24. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC transport at holographic quantum Hall transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Ryu and T. Takayanagi, Topological insulators and superconductors from D-branes, Phys. Lett. B 693 (2010) 175 [arXiv:1001.0763] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. S. Ryu and T. Takayanagi, Topological insulators and superconductors from string theory, Phys. Rev. D 82 (2010) 086014 [arXiv:1007.4234] [SPIRES].

    ADS  Google Scholar 

  31. C. Hoyos-Badajoz, K. Jensen and A. Karch, A holographic fractional topological insulator, Phys. Rev. D 82 (2010) 086001 [arXiv:1007.3253] [SPIRES].

    ADS  Google Scholar 

  32. A. Karch, J. Maciejko and T. Takayanagi, Holographic fractional topological insulators in 2 + 1 and 1 + 1 dimensions, Phys. Rev. D 82 (2010) 126003 [arXiv:1009.2991] [SPIRES].

    ADS  Google Scholar 

  33. P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492.

    Article  ADS  Google Scholar 

  34. E. Abrahams et al., Scaling theory of localization: absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42 (1979) 673.

    Article  ADS  Google Scholar 

  35. P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57 (1985) 287 [SPIRES].

    Article  ADS  Google Scholar 

  36. D. Belitz and T.R. Kirkpatrick, The Anderson-Mott transition, Rev. Mod. Phys. 66 (1994) 261 [SPIRES].

    Article  ADS  Google Scholar 

  37. F. Evers and A.D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80 (2008) 1355 [SPIRES].

    Article  ADS  Google Scholar 

  38. S.V. Kravchenko and M.P. Sarachik, Metal-insulator transition in two-dimensional electron systems, Rep. Prog. Phys. 67 (2004) 1.

    Article  ADS  Google Scholar 

  39. A. Punnoose and A.M. Finkel’stein, Metal-insulator transition in disordered two-dimensional electron systems, Science 310 (2005) 289.

    Article  ADS  Google Scholar 

  40. S. Das Sarma et al., Electronic transport in two dimensional graphene, arXiv:1003.4731.

  41. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered systems and the replica method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S. Kachru, A. Karch and S. Yaida, Adventures in holographic dimer models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [SPIRES].

    Article  ADS  Google Scholar 

  45. M.S. Foster, S. Ryu and A.W.W. Ludwig, Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition: field theory description using the functional renormalization group, Phys. Rev. B 80 (2009) 075101.

    ADS  Google Scholar 

  46. T. Vojta Atypical is normal at the metal-insulator transition, Physics 2 (2009) 66.

    Article  Google Scholar 

  47. A. Adams and S. Yaida, Disordered holographic systems I: functional renormalization, arXiv:1102.2892 [SPIRES].

  48. L.-Y. Hung and Y. Shang, On 1-loop diagrams in AdS space, Phys. Rev. D 83 (2011) 024029 [arXiv:1007.2653] [SPIRES].

    ADS  Google Scholar 

  49. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  ADS  Google Scholar 

  55. C.-M. Chen and D.-W. Pang, Holography of charged dilaton black holes in general dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].

    Article  ADS  Google Scholar 

  56. S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [SPIRES].

    Article  ADS  Google Scholar 

  58. C. Hoyos-Badajoz, A. O’Bannon and J.M.S. Wu, Zero sound in strange metallic holography, JHEP 09 (2010) 086 [arXiv:1007.0590] [SPIRES].

    Article  ADS  Google Scholar 

  59. M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70 (1998) 1039 [SPIRES].

    Article  ADS  Google Scholar 

  60. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].

    Article  Google Scholar 

  61. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  64. T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [SPIRES].

    Article  ADS  Google Scholar 

  65. K. Balasubramanian and J. McGreevy, The particle number in galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [SPIRES].

    Article  ADS  Google Scholar 

  67. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  68. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. H.U. Baranger and A.D. Stone, Electrical linear-response theory in an arbitrary magnetic field: A new Fermi-surface formation, Phys. Rev. B 40 (1989) 8169.

    ADS  Google Scholar 

  70. S. Xiong, N. Read and A.D. Stone, Mesoscopic conductance and its fluctuations at a non-zero Hall angle, Phys. Rev. B 56 (1997) 3982 [cond-mat/9701077].

    ADS  Google Scholar 

  71. P.M. Ostrovsky, I.V. Gornyi and A.D. Mirlin, Quantum criticality and minimal conductivity in graphene with long-range disorder, Phys. Rev. Lett. 98 (2007) 256801 [cond-mat/0702115].

    Article  ADS  Google Scholar 

  72. S. Ryu et al., Z2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of Anderson localization, Phys. Rev. Lett. 99 (2007) 116601.

    Article  ADS  Google Scholar 

  73. J.H. Bardarson et al., Demonstration of one-parameter scaling at the Dirac point in graphene, Phys. Rev. Lett. 99 (2007) 106801 [arXiv:0705.0886].

    Article  ADS  Google Scholar 

  74. K. Nomura, M. Koshino and S. Ryu, Topological delocalization of two-dimensional massless Dirac fermions, Phys. Rev. Lett. 99 (2007) 146806 [arXiv:0705.1607].

    Article  ADS  Google Scholar 

  75. A.W.W. Ludwig, M.P.A. Fisher, R. Shankar and G. Grinstein, Integer quantum Hall transition: an alternative approach and exact results, Phys. Rev. B 50 (1994) 7526.

    ADS  Google Scholar 

  76. S. Cho and M.P.A. Fisher, Conductance fluctuations at the integer quantum Hall plateau transition, Phys. Rev. B 55 (1997) 1673.

    Google Scholar 

  77. K. Nomura et al., Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field, Phys. Rev. Lett. 100 (2008) 246806 [arXiv:0801.3121].

    Article  ADS  Google Scholar 

  78. O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  79. C.L. Kane and M.P.A. Fisher, Transport in a one-channel Luttinger liquid, Phys. Rev. Lett. 68 (1992) 1220.

    Article  ADS  Google Scholar 

  80. A. Furusaki and N. Nagaosa, Single-barrier problem and Anderson localization in a one-dimensional interacting electron system, Phys. Rev. B 47 (1993) 4631.

    ADS  Google Scholar 

  81. D.R. Gulotta, C.P. Herzog and M. Kaminski, Sum rules from an extra dimension, JHEP 01 (2011) 148 [arXiv:1010.4806] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. G.D. Mahan, Many-particle physics, 3rd edition, Kluwer Academic/Plenum Publishers, U.S.A. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Takayanagi.

Additional information

ArXiv ePrint: 1103.6068

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, S., Takayanagi, T. & Ugajin, T. Holographic conductivity in disordered systems. J. High Energ. Phys. 2011, 115 (2011). https://doi.org/10.1007/JHEP04(2011)115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)115

Keywords

Navigation