Skip to main content
Log in

On the numerical evaluation of loop integrals with Mellin-Barnes representations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

An improved method is presented for the numerical evaluation of multi-loop integrals in dimensional regularization. The technique is based on Mellin-Barnes representations, which have been used earlier to develop algorithms for the extraction of ultraviolet and infrared divergencies. The coefficients of these singularities and the non-singular part can be integrated numerically. However, the numerical integration often does not converge for diagrams with massive propagators and physical branch cuts. In this work, several steps are proposed which substantially improve the behavior of the numerical integrals. The efficacy of the method is demonstrated by calculating several two-loop examples, some of which have not been known before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Complete electroweak O(alpha) corrections to charged- current e + e 4fermion processes, Phys. Lett. B 612 (2005) 223 [hep-ph/0502063] [SPIRES].

    ADS  Google Scholar 

  2. A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].

    Article  ADS  Google Scholar 

  3. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].

    Article  ADS  Google Scholar 

  4. R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W + 3 jet production in hadron collisions, JHEP 01 (2009) 012 [arXiv:0810.2762] [SPIRES].

    Article  ADS  Google Scholar 

  5. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].

    Article  ADS  Google Scholar 

  6. C.F. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].

    Article  ADS  Google Scholar 

  7. C.F. Berger et al., Next-to-Leading Order QCD Predictions for W+3-Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].

    ADS  Google Scholar 

  8. D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  10. F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].

    Article  ADS  Google Scholar 

  12. T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

    Article  ADS  Google Scholar 

  16. Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  23. NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg working group: Summary report, arXiv:0803.0494 [SPIRES].

  24. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W-boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [SPIRES].

    ADS  Google Scholar 

  25. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 θ lepteff and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Awramik, M. Czakon and A. Freitas, Bosonic corrections to the effective weak mixing angle at O(α 2), Phys. Lett. B 642 (2006) 563 [hep-ph/0605339] [SPIRES].

    ADS  Google Scholar 

  27. W. Hollik, U. Meier and S. Uccirati, The effective electroweak mixing angle sin2 θ eff with two-loop fermionic contributions, Nucl. Phys. B 731 (2005) 213 [hep-ph/0507158] [SPIRES].

    Article  ADS  Google Scholar 

  28. W. Hollik, U. Meier and S. Uccirati, The effective electroweak mixing angle sin2 θ eff with two-loop bosonic contributions, Nucl. Phys. B 765 (2007) 154 [hep-ph/0610312] [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Awramik, M. Czakon, A. Freitas and B.A. Kniehl, Two-loop electroweak fermionic corrections to \( \text{sin}{^2}\theta_{eff}^{b\bar b} \), Nucl. Phys. B 813 (2009) 174 [arXiv:0811.1364] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [SPIRES].

    Article  ADS  Google Scholar 

  31. R. Hamberg, W.L. van Neerven and T. Matsuura, A Complete calculation of the order αs 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].

    Article  ADS  Google Scholar 

  32. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [SPIRES].

    ADS  Google Scholar 

  33. K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s 2 ), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [SPIRES].

    ADS  Google Scholar 

  34. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [SPIRES].

    ADS  Google Scholar 

  35. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [SPIRES].

    Article  ADS  Google Scholar 

  36. M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [SPIRES].

    ADS  Google Scholar 

  37. R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-Loop Fermionic Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [SPIRES].

    Article  ADS  Google Scholar 

  38. R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [SPIRES].

    Article  ADS  Google Scholar 

  39. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].

    Article  ADS  Google Scholar 

  40. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

    Article  ADS  Google Scholar 

  41. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [SPIRES].

    Article  ADS  Google Scholar 

  42. G. Davatz et al., Combining Monte Carlo generators with next-to-next-to- leading order calculations: Event reweighting for Higgs boson production at the LHC, JHEP 07 (2006) 037 [hep-ph/0604077] [SPIRES].

    Article  ADS  Google Scholar 

  43. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].

    Article  ADS  Google Scholar 

  44. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES].

    ADS  Google Scholar 

  45. S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys. B 434 (1995) 383 [hep-ph/9409388] [SPIRES].

    Article  ADS  Google Scholar 

  46. B.A. Kniehl, Dispersion relations in loop calculations, Acta Phys. Polon. B 27 (1996) 3631 [hep-ph/9607255] [SPIRES].

    Google Scholar 

  47. P. Cvitanovic and T. Kinoshita, Sixth Order Magnetic Moment of the electron, Phys. Rev. D 10 (1974) 4007 [SPIRES].

    ADS  Google Scholar 

  48. A. Ghinculov and J.J. van der Bij, Massive two loop diagrams: The Higgs propagator, Nucl. Phys. B 436 (1995) 30 [hep-ph/9405418] [SPIRES].

    Article  ADS  Google Scholar 

  49. T. Kinoshita and M. Nio, Improved α 4 term of the muon anomalous magnetic moment, Phys. Rev. D 70 (2004) 113001 [hep-ph/0402206] [SPIRES].

    ADS  Google Scholar 

  50. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].

    Article  ADS  Google Scholar 

  52. V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].

    ADS  Google Scholar 

  53. J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. C. Anastasiou and A. Daleo, Numerical evaluation of loop integrals, JHEP 10 (2006) 031 [hep-ph/0511176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].

    Article  ADS  Google Scholar 

  56. Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N- photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [SPIRES].

    ADS  Google Scholar 

  57. C. Anastasiou, S. Beerli and A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP 05 (2007) 071 [hep-ph/0703282] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. L.N.G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edin. 49 (1928) 38.

    Google Scholar 

  59. G.P. Lepage, Vegas: An Adaptive Multidimensional Integration Program, report CLNS-80-447 (1980).

  60. Wolfram Research Inc, G. P. Lepage, Mathematica Version 6.0, http://documents.wolfram.com/v6/ (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayres Freitas.

Additional information

ArXiv ePrint: 1001.3243

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, A., Huang, YC. On the numerical evaluation of loop integrals with Mellin-Barnes representations. J. High Energ. Phys. 2010, 74 (2010). https://doi.org/10.1007/JHEP04(2010)074

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)074

Keywords

Navigation