Skip to main content
Log in

Superconformal symmetry and maximal supergravity in various dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we explore the relation between conformal superalgebras with 64 supercharges and maximal supergravity theories in three, four and six dimensions using twistorial oscillator techniques. The massless fields of \( \mathcal{N} = {8} \) supergravity in four dimensions were shown to fit into a CPT-self-conjugate doubleton supermultiplet of the conformal superalgebra SU(2, 2|8) a long time ago. We show that the fields of maximal supergravity in three dimensions can similarly be fitted into the super singleton multiplet of the conformal superalgebra OSp(16|4, \( \mathbb{R} \)), which is related to the doubleton supermultiplet of SU(2, 2|8) by dimensional reduction. Moreover, we construct the ultra-short supermultiplet of the six-dimensional conformal superalgebra OSp(8* |8) and show that its component fields can be organized in an on-shell superfield. The ultra-short OSp(8* |8) multiplet reduces to the doubleton supermultiplet of SU(2, 2|8) upon dimensional reduction. We discuss the possibility of a novel non-metric based (4, 0) six-dimensional supergravity theory with USp(8) R-symmetry that reduces to maximal supergravity in four dimensions and is different from six-dimensional metric based (2, 2) maximal supergravity, whose fields cannot be fitted into a unitary supermultiplet of a simple conformal superalgebra.

Such an interacting (4, 0) theory would be the non-metric gravitational analog of the interacting (2, 0) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. M. Gunaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2,D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11.

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Günaydin, P. van Nieuwenhuizen and N. Warner, General construction of the unitary representations of Anti-de Sitter superalgebras and the spectrum of the S 4 compactification of eleven-dimensional supergravity, Nucl. Phys. B 255 (1985) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Günaydin and N. Warner, Unitary supermultiplets of Osp(8/4, R) and the spectrum of the S 7 compactification of eleven-dimensional supergravity, Nucl. Phys. B 272 (1986) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Günaydin and S. Hyun, Unitary lowest weight representations of the noncompact supergroup OSp(2 − n/2 − m, R), J. Math. Phys. 29 (1988) 2367 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P.A. Dirac, A Remarkable respresentation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. Majorana, Teoria relativistica di particelle con momento intrinseco arbitrario, Nuovo Cim. 9 (1932) 335.

    Article  Google Scholar 

  9. C. Fronsdal, The Dirac supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. M. Flato and C. Fronsdal, Quantum field theory of singletons: the RAC, J. Math. Phys. 22 (1981) 1100 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Angelopoulos, M. Flato, C. Fronsdal and D. Sternheimer, Massless particles, conformal group and de Sitter universe, Phys. Rev. D 23 (1981) 1278 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, arXiv:0908.3624 [INSPIRE].

  13. S. Fernando and M. Günaydin, Minimal unitary representation of SO*(8) = SO(6, 2) and its SU(2) deformations as massless 6D conformal fields and their supersymmetric extensions, Nucl. Phys. B 841 (2010) 339 [arXiv:1005.3580] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Fernando and M. Günaydin, SU(2) deformations of the minimal unitary representation of OSp(8 * |2N ) as massless 6D conformal supermultiplets, Nucl. Phys. B 843 (2011) 784 [arXiv:1008.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 supergravity ultraviolet finite?, Phys. Lett. B 644 (2007) 265 [hep-th/0611086] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

    ADS  Google Scholar 

  18. Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett. 103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Amplitudes and ultraviolet behavior of N = 8 supergravity, arXiv:1103.1848 [INSPIRE].

  20. Z. Bern, L.J. Dixon, M. Perelstein and J. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. Z. Bern, N. Bjerrum-Bohr and D.C. Dunbar, Inherited twistor-space structure of gravity loop amplitudes, JHEP 05 (2005) 056 [hep-th/0501137] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Six-point one-loop N = 8 supergravity NMHV amplitudes and their IR behaviour, Phys. Lett. B 621 (2005) 183 [hep-th/0503102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, The no-triangle hypothesis for N = 8 supergravity, JHEP 12 (2006) 072 [hep-th/0610043] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Bjerrum-Bohr and P. Vanhove, Explicit cancellation of triangles in one-loop gravity amplitudes, JHEP 04 (2008) 065:dx.doi.org [arXiv:0802.0868] [INSPIRE].

  25. R. Kallosh, The effective action of N = 8 supergravity, arXiv:0711.2108 [INSPIRE].

  26. G. Chalmers, On the finiteness of N = 8 quantum supergravity, hep-th/0008162 [INSPIRE].

  27. M.B. Green, J.G. Russo and P. Vanhove, Non-renormalisation conditions in type-II string theory and maximal supergravity, JHEP 02 (2007) 099 [hep-th/0610299] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M.B. Green, H. Ooguri and J.H. Schwarz, Nondecoupling of maximal supergravity from the superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Kallosh, N = 8 counterterms and E 7(7) current conservation, JHEP 06 (2011) 073 [arXiv:1104.5480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Kallosh, E 7(7) symmetry and finiteness of N = 8 supergravity, arXiv:1103.4115 [INSPIRE].

  33. G. Bossard and H. Nicolai, Counterterms vs. dualities, JHEP 08 (2011) 074 [arXiv:1105.1273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Kallosh, N = 8 supergravity on the light cone, Phys. Rev. D 80 (2009) 105022 [arXiv:0903.4630] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. M. Gunaydin and N. Marcus, The unitary supermultiplet of N = 8 conformal superalgebra involving fields of spin ≤ 2, Class. Quant. Grav. 2 (1985) L19.

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Drummond, P. Heslop and P. Howe, A note on N = 8 counterterms, arXiv:1008.4939 [INSPIRE].

  37. N. Beisert et al., E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2010) 265 [arXiv:1009.1643] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. L. Brink and P.S. Howe, The N = 8 supergravity in superspace, Phys. Lett. B 88 (1979) 268 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Kallosh, Counterterms in extended supergravities, Phys. Lett. B 99 (1981) 122 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. P.S. Howe and U. Lindström, Higher order invariants in extended supergravity, Nucl. Phys. B 181 (1981) 487 [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Drummond, P. Heslop, P. Howe and S. Kerstan, Integral invariants in N = 4 SYM and the effective action for coincident D-branes, JHEP 08 (2003) 016 [hep-th/0305202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Broedel and L.J. Dixon, R 4 counterterm and E 7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. G. Bossard, P. Howe and K. Stelle, On duality symmetries of supergravity invariants, JHEP 01 (2011) 020 [arXiv:1009.0743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

  46. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. C. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237 [hep-th/0004195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. C. Hull, Symmetries and compactifications of (4, 0) conformal gravity, JHEP 12 (2000) 007 [hep-th/0011215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys. 53 (1969) 174 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. M. Günaydin, D. Minic and M. Zagermann, Novel supermultiplets of SU(2, 2|4) and the AdS 5/CFT 4 duality, Nucl. Phys. B 544 (1999) 737 [hep-th/9810226] [INSPIRE].

    Article  ADS  Google Scholar 

  52. B. Binegar, Relativistic field theories in three-dimensions, J. Math. Phys. 23 (1982) 1511 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Günaydin, D. Minic and M. Zagermann, 4D doubleton conformal theories, CPT and IIB string on AdS 5 × S 5, Nucl. Phys. B 534 (1998) 96 [Erratum ibid. B 538 (1999) 531] [hep-th/9806042] [INSPIRE].

  54. A.O. Barut and H. Kleinert, Dynamical group O(4, 2) for baryons and the behaviour of form factors, Phys. Rev. 161 (1967) 1464.

    Article  ADS  Google Scholar 

  55. A. Barut and H. Kleinert, Current operators and Majorana equation for the hydrogen atom from dynamical groups, Phys. Rev. 157 (1967) 1180 [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Mack and I. Todorov, Irreducibility of the ladder representations of U(2,2) when restricted to the Poincaré subgroup, J. Math. Phys. 10 (1969) 2078 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. W. Siegel, On-shell O(N) supergravity in superspace, Nucl. Phys. B 177 (1981) 325 [INSPIRE].

    Article  ADS  Google Scholar 

  58. P.S. Howe, K. Stelle and P. Townsend, Supercurrents, Nucl. Phys. B 192 (1981) 332 [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Ferrara and E. Sokatchev, Superconformal interpretation of BPS states in AdS geometries, Int. J. Theor. Phys. 40 (2001) 935 [hep-th/0005151] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  60. N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys. B 228 (1983) 145 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. H. Samtleben and R. Wimmer, N = 8 superspace constraints for three-dimensional gauge theories, JHEP 02 (2010) 070 [arXiv:0912.1358] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Günaydin and S. Takemae, Unitary supermultiplets of OSp(8* |4) and the AdS 7 /CFT 6 duality, Nucl. Phys. B 578 (2000) 405 [Erratum ibid. B 697 (2004) 399-402] [hep-th/9910110] [INSPIRE].

  64. S. Fernando, M. Günaydin and S. Takemae, Supercoherent states of OSp(8* |2N), conformal superfields and the AdS 7 /CFT 6 duality, Nucl. Phys. B 628 (2002) 79 [hep-th/0106161] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Greitz and P. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. S. Ferrara and E. Sokatchev, Representations of superconformal algebras in the AdS(7/4)/CFT(6/3) correspondence, J. Math. Phys. 42 (2001) 3015 [hep-th/0010117] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. M. Günaydin and C. Saclioglu, Oscillator like unitary representations of noncompact groups with a Jordan structure and the noncompact groups of supergravity, Commun. Math. Phys. 87 (1982) 159 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. I. Bars and M. Günaydin, Unitary representations of noncompact supergroups, Commun. Math. Phys. 91 (1983) 31 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. M. Günaydin and R. Scalise, Unitary lowest weight representations of the noncompact supergroup OSp(2m */2n), J. Math. Phys. 32 (1991) 599 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. M. Günaydin, Generalized conformal and superconformal group actions and Jordan algebras, Mod. Phys. Lett. A 8 (1993) 1407 [hep-th/9301050] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Günaydin, The exceptional superspace and the quadratic Jordan formulation of quantum mechanics, in Elementary particles and the universe: Essays in honor of Murray Gell-Mann, J.H. Schwarz ed., Cambridge University Press, Cambridge U.K. (1991).

    Google Scholar 

  72. C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, JHEP 04 (2010) 127 [arXiv:0910.2688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. P. Claus, R. Kallosh and A. Van Proeyen, M five-brane and superconformal (0, 2) tensor multiplet in six-dimensions, Nucl. Phys. B 518 (1998) 117 [hep-th/9711161] [INSPIRE].

    Article  ADS  Google Scholar 

  75. P.S. Howe, G. Sierra and P. Townsend, Supersymmetry in six-dimensions, Nucl. Phys. B 221 (1983) 331 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. S. Ferrara and E. Sokatchev, Representations of (1, 0) and (2, 0) superconformal algebras in six-dimensions: massless and short superfields, Lett. Math. Phys. 51 (2000) 55 [hep-th/0001178] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  77. P. Arvidsson, E. Flink and M. Henningson, Supersymmetric coupling of a selfdual string to a (2, 0) tensor multiplet background, JHEP 11 (2003) 015 [hep-th/0309244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. J. Labastida and T. Morris, Massless mixed symmetry bosonic free fields, Phys. Lett. B 180 (1986) 101 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. E. Witten, New ’gauge’ theories in six-dimensions, JHEP 01 (1998) 001 [hep-th/9710065] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].

  82. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [INSPIRE].

  83. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. N. Berkovits, An alternative string theory in twistor space for N = 4 super Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Broedel and B. Wurm, New twistor string theories revisited, Phys. Lett. B 675 (2009) 463 [arXiv:0902.0550] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 .

    Article  MathSciNet  ADS  Google Scholar 

  88. S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  89. A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. M. Taronna, Higher spins and string interactions, arXiv:1005.3061 [INSPIRE].

  91. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  92. M. Porrati, Universal limits on massless high-spin particles, Phys. Rev. D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  93. R. Haag, J.T. Lopuszanski and M. Sohnius, All possible generators of supersymmetries of the S matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B 227 (1983) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  95. A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  96. R. Metsaev, Cubic interaction vertices of totally symmetric and mixed symmetry massless representations of the Poincaré group in D = 6 space-time, Phys. Lett. B 309 (1993) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. F.A. Berends, G. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  99. R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

    Article  ADS  Google Scholar 

  100. W. Ruehl, Solving Noether’s equations for gauge invariant local lagrangians of N arbitrary higher even spin fields, arXiv:1108.0225 [INSPIRE].

  101. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [INSPIRE].

  102. Y.-t. Huang and A.E. Lipstein, Amplitudes of 3D and 6d maximal superconformal theories in supertwistor space, JHEP 10 (2010) 007 [arXiv:1004.4735] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. B. Czech, Y.-t. Huang and M. Rozali, Amplitudes for multiple M5 branes, arXiv:1110.2791 [INSPIRE].

  104. Y. Tanii, N = 8 supergravity in six-dimensions, Phys. Lett. B 145 (1984) 197 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  105. M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  Google Scholar 

  106. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. H. Elvang, D.Z. Freedman and M. Kiermaier, A simple approach to counterterms in N = 8 supergravity, JHEP 11 (2010) 016 [arXiv:1003.5018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. H. Elvang, D.Z. Freedman and M. Kiermaier, SUSY Ward identities, superamplitudes and counterterms, J. Phys. A 44 (2011) 454009 [arXiv:1012.3401] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  109. D.Z. Freedman and E. Tonni, The D 2k R 4 invariants of N = 8 supergravity, JHEP 04 (2011) 006 [arXiv:1101.1672] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. G. Bossard, P. Howe, K. Stelle and P. Vanhove, The vanishing volume of D = 4 superspace, Class. Quant. Grav. 28 (2011) 215005 [arXiv:1105.6087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Günaydin.

Additional information

ArXiv ePrint: 1108.3085

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiodaroli, M., Günaydin, M. & Roiban, R. Superconformal symmetry and maximal supergravity in various dimensions. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP03(2012)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)093

Keywords

Navigation