Skip to main content
Log in

The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The decay of a light Higgs boson to bottom quarks is dominant and can be exploited for the discovery of the Higgs particle and the measurement of its properties at the LHC and future collider experiments. We perform a first computation of the fully differential decay at next-next-to-leading order in perturbative QCD. We employ a novel method of non-linear mappings for the treatment of singularities in the radiative processes which contribute to the decay width. This constitutes the first physical application of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baikov, K. Chetyrkin and J.H. Kuhn, Scalar correlator at \( O\left( {\alpha_s^4} \right) \) , Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Gorishnii, A. Kataev and S. Larin, The width of Higgs boson decay into hadrons: three loop corrections of strong interactions, Sov. J. Nucl. Phys. 40 (1984) 329 [INSPIRE].

    Google Scholar 

  3. S. Gorishnii, A. Kataev, S. Larin and L. Surguladze, Corrected three loop QCD correction to the correlator of the quark scalar currents and Γ tot (H 0hadrons), Mod. Phys. Lett. A 5 (1990) 2703 [INSPIRE].

    ADS  Google Scholar 

  4. S. Gorishnii, A. Kataev, S. Larin and L. Surguladze, Scheme dependence of the next to next-to-leading QCD corrections to Γ tot (H 0hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D 43 (1991) 1633 [INSPIRE].

    ADS  Google Scholar 

  5. C. Becchi, S. Narison, E. de Rafael and F. Yndurain, Light quark masses in quantum chromodynamics and chiral symmetry breaking, Z. Phys. C 8 (1981) 335 [INSPIRE].

    ADS  Google Scholar 

  6. N. Sakai, Perturbative QCD corrections to the hadronic decay width of the Higgs boson, Phys. Rev. D 22 (1980) 2220 [INSPIRE].

    ADS  Google Scholar 

  7. T. Inami and T. Kubota, Renormalization group estimate of the hadronic decay width of the Higgs boson, Nucl. Phys. B 179 (1981) 171 [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Chetyrkin, Correlator of the quark scalar currents and Γ tot (Hhadrons) at \( O{ }\left( {\alpha_S^3} \right) \) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].

    ADS  Google Scholar 

  9. K. Chetyrkin and M. Steinhauser, Complete QCD corrections of order \( O{ }\left( {\alpha_S^3} \right) \) to the hadronic Higgs decay, Phys. Lett. B 408 (1997) 320 [hep-ph/9706462] [INSPIRE].

    ADS  Google Scholar 

  10. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  12. ATLAS collaboration, ATLAS sensitivity to the standard model Higgs in the HW and HZ channels at High transverse momenta, PHYS-PUB-2009-088 (2009).

  13. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [INSPIRE].

    ADS  Google Scholar 

  18. C. Berger et al., Precise predictions for W + 4 jet production at the large hadron collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].

    Article  ADS  Google Scholar 

  19. C. Berger et al., Next-to-leading order QCD predictions for Z, γ * + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].

    ADS  Google Scholar 

  20. C. Berger et al., Next-to-leading order QCD Predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].

    ADS  Google Scholar 

  21. H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].

    ADS  Google Scholar 

  22. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: \( pp \to t\overline t b\overline b \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: A study of \( pp \to t\overline t + {2} \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Greiner, A. Guffanti, J.-P. Guillet, T. Reiter and J. Reuter, NLO QCD corrections to 4 b-quark production, PoS(DIS 2010)156 [arXiv:1006.5339] [INSPIRE].

  26. R. Frederix et al., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  28. R. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. van Hameren, C. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  30. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

    ADS  Google Scholar 

  37. A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].

    Article  Google Scholar 

  43. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

    Article  ADS  Google Scholar 

  50. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  52. P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I., JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].

    Article  ADS  Google Scholar 

  54. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I., JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  56. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  58. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  63. K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( {\text{O}}\left( {\alpha_s^2} \right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

    ADS  Google Scholar 

  64. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

    Article  ADS  Google Scholar 

  65. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  66. C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  68. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ →4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e + e → 2 jets through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Infrared structure of e + e → 2 jets at NNLO, Nucl. Phys. B 691 (2004) 195 [hep-ph/0403057] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  74. C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

  76. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  78. MAPLE, http://www.maplesoft.com.

  79. K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  80. F. Tkachov, a theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  81. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Biswas and K. Melnikov, Second order QCD corrections to inclusive semileptonic \( b \to {X_c}l{\overline \nu_l} \) decays with massless and massive lepton, JHEP 02 (2010) 089 [arXiv:0911.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  84. JADE collaboration, W. Bartel et al., Experimental studies on multi-jet production in e + e annihilation at PETRA energies, Z. Phys. C 33 (1986) 23 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Anastasiou.

Additional information

ArXiv ePrint: 1110.2368

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiou, C., Herzog, F. & Lazopoulos, A. The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD. J. High Energ. Phys. 2012, 35 (2012). https://doi.org/10.1007/JHEP03(2012)035

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)035

Keywords

Navigation