Skip to main content
Log in

Double virtual corrections for gluon scattering at NNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use the antenna subtraction method to isolate the double virtual infrared singularities present in gluonic scattering amplitudes at next-to-next-to-leading order. In previous papers, we derived the subtraction terms that rendered (a) the double real radiation tree-level process finite in the single and double unresolved regions of phase space and (b) the mixed single real radiation one-loop process both finite and well behaved in the unresolved regions of phase space. Here, we show how to construct the double virtual subtraction term using antenna functions with both initial- and final-state partons which remove the explicit infrared poles present in the two-loop amplitude. As an explicit example, we write down the subtraction term for the four-gluon two-loop process. The infrared poles are explicitly and locally cancelled in all regions of phase space leaving a finite remainder that can be safely evaluated numerically in four-dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDF collaboration, T. Aaltonen et al., Measurement of the Inclusive Jet Cross Section at the Fermilab Tevatron \( p\overline{p} \) Collider Using a Cone-Based Jet Algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

  2. D0 collaboration, V. Abazov et al., Measurement of the inclusive jet cross-section in pp collisions at s 91/2) = 1.96-TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].

    Article  ADS  Google Scholar 

  3. ATLAS collaboration, Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1512 [arXiv:1009.5908] [INSPIRE].

    ADS  Google Scholar 

  4. ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].

    ADS  Google Scholar 

  5. CMS Collaboration, Measurement of the differential dijet production cross section in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Physics Letters B 700 (2011) 187 [arXiv:1104.1693].

    ADS  Google Scholar 

  6. CMS collaboration, Measurement of the Inclusive Jet Cross Section in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  7. CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 036 [arXiv:1202.0704] [INSPIRE].

    ADS  Google Scholar 

  8. D0 collaboration, V. Abazov et al., Determination of the strong coupling constant from the inclusive jet cross section in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 80 (2009) 111107 [arXiv:0911.2710] [INSPIRE].

    ADS  Google Scholar 

  9. W. Giele, E.N. Glover and J. Yu, The Determination of α s at hadron colliders, Phys. Rev. D 53 (1996) 120 [hep-ph/9506442] [INSPIRE].

    ADS  Google Scholar 

  10. S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order \( \alpha_S^3 \) in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].

    Article  ADS  Google Scholar 

  11. W. Giele, E.N. Glover and D.A. Kosower, The Two-Jet Differential Cross Section at \( \mathcal{O}\left( {\alpha_s^3} \right) \) in Hadron Collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

    ADS  Google Scholar 

  14. S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders, arXiv:1207.0513 [INSPIRE].

  16. S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095 [arXiv:1210.0438] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Z. Bern et al., Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s}=8 \) TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  20. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Binoth and G. Heinrich, An Automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Heinrich, A Numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [hep-ph/0211144] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. C. Anastasiou, K. Melnikov and F. Petriello, A New method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  24. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the HWWℓνℓν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Anastasiou, F. Herzog and A. Lazopoulos, The Fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

    ADS  Google Scholar 

  34. M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWℓνℓν and HZZ → 4ℓ decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: A Fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Catani, G. Ferrera and M. Grazzini, W Boson Production at Hadron Colliders: The Lepton Charge Asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at \( O\left( {\alpha_s^3} \right) \) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Weinzierl, The Infrared structure of e + e → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Weinzierl, Jet algorithms in electron-positron annihilation: Perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].

  45. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].

    ADS  Google Scholar 

  50. P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the all-fermion processes, JHEP 04 (2012) 076 [arXiv:1112.4736] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G. Abelof and A. Gehrmann-De Ridder, Double real radiation corrections to \( t\overline{t} \) production at the LHC: the \( gg\to t\overline{t}q\overline{q} \) channel, JHEP 11 (2012) 074 [arXiv:1207.6546] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Abelof, A. Gehrmann-De Ridder and O. Dekkers, Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations, JHEP 12 (2012) 107 [arXiv:1210.5059] [INSPIRE].

    Article  ADS  Google Scholar 

  62. E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].

    Article  Google Scholar 

  63. A. Gehrmann-De Ridder, E. Glover and J. Pires, Real-Virtual corrections for gluon scattering at NNLO, JHEP 02 (2012) 141 [arXiv:1112.3613] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A.G.-D. Ridder, T. Gehrmann, E. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, arXiv:1301.7310 [INSPIRE].

  65. S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

    Article  ADS  Google Scholar 

  66. G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus, Nucl. Phys. B 294 (1987) 700 [INSPIRE].

    Article  ADS  Google Scholar 

  68. D. Kosower, B.-H. Lee and V. Nair, Multi gluon scattering: a string based calculation, Phys. Lett. B 201 (1988) 85 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi - Gluon Scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].

    Article  ADS  Google Scholar 

  70. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E.N. Glover and M. Tejeda-Yeomans, One loop QCD corrections to gluon-gluon scattering at NNLO, JHEP 05 (2001) 010 [hep-ph/0104178] [INSPIRE].

    Article  ADS  Google Scholar 

  74. S. Weinzierl, Does one need the O(ϵ)- and O(ϵ 2)-terms of one-loop amplitudes in an NNLO calculation ?, Phys. Rev. D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].

    ADS  Google Scholar 

  75. D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097] [INSPIRE].

    ADS  Google Scholar 

  76. A. Vogt, S. Moch and J. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Pires.

Additional information

ArXiv ePrint: 1211.2710

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann-De Ridder, A., Gehrmann, T., Glover, E. et al. Double virtual corrections for gluon scattering at NNLO. J. High Energ. Phys. 2013, 26 (2013). https://doi.org/10.1007/JHEP02(2013)026

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)026

Keywords

Navigation