Skip to main content
Log in

Effects of acute administration of growth hormone-releasing hormone (GHRH) and oxytocin on somatotroph cells in sheep: Morphometric study and growth hormone (GH) secretion

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In this work, the combined use of the morphometric study of somatotroph cells and plasma GH levels provided new data for the interpretation of the role played by OT and GHRH on GH cells. GHRH 1–29 (15 µg/kg), oxytocin (2.5 IU animal) or 1 ml saline solution were administered to male lambs. The GH plasma concentration was measured by RIA and for the morphometric study the cellular area, nuclear area and volume density of the somatotroph cells were measured in 1 µm semi-thin sections immunolabeled with avidin-biotin technique (ABC). The area under the GH response curve for 3 hours after injection was similar in both saline and OT-treated animals (24.8 ± 9.1 and 31.4 ± 14.7 µg/ml, respectively) and much lower than that observed in GHRH-treated animals (445.5 ± 126.7 µg/ml). The cell area of somatotrophs was smaller in the GHRH-treated lambs and larger in the OT-treated lambs than in the control lambs (71.47 ± 1.56, 91.42 ± 1.72 and 83.1 ± 1.74 µm2, respectively). A similar change was observed in the nuclear area; it decreased in the GHRH-treated lambs (21.61 ± 0.52 µm2) and increased in the OT-treated lambs (25.45 ± 0.68 µm2) with respect to the control group (23.75 ± 0.44 µm2). No significant differences were found in volume density. These results show a decrease in the size and an increase in the number of somatotrophs in the GHRH-treated lambs; while in oxytocin-treated lambs there is an opposite effect, an increase in the size of the cells and a decrease in the number of cells staining with anti-GH ovine with respect to control lambs. This study provides information on the mechanism regulating the secretion of GH by GHRH and oxytocin in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guillemin A.J., Brazeau P., Böhlen A. P., Esch F., Ling N., Wehrenberg W.B., Bloch B., Mougin C., Zeytin F., Baird A. Somatocrinin, the growth hormone releasing factor. Recent. Prog. Horm. Res. 40: 233, 1984.

    CAS  PubMed  Google Scholar 

  2. Rivie R., Spiess J., Thorner IV., Vale W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300: 276, 1982.

    Article  Google Scholar 

  3. Brazeau P., Vale, W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 197: 77, 1973.

    Article  Google Scholar 

  4. Mulle E.E. Neural control of somatotropic function. Physiol. Rev. 67: 962, 1987.

    Google Scholar 

  5. Meyer V., Knobil E. Stimulation of growth hormone secretion by vasopressin in the rhesus monkey. Endocrinology 79: 1016, 1966.

    Article  CAS  PubMed  Google Scholar 

  6. Heindingsfelder S.A., Blackard W.G. Adrenergic control mechanism for vasopressin-induced plasma growth hormone response. Metabolism 17: 1019, 1968.

    Article  Google Scholar 

  7. Samson W.K., Lumpkin M.D., McCann S.M. Evidence for a physiological role for oxytocin in the control of prolactin secretion. Endocrinology 119: 554, 1986.

    Article  CAS  PubMed  Google Scholar 

  8. Gibbs D.M. High concentrations of oxytocin in hypophysial portal plasma. Endocrinology 114: 1216, 1984.

    Article  CAS  PubMed  Google Scholar 

  9. Antoni F.A., Holmess M.C., Jones M.T. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4: 411, 1983.

    Article  CAS  PubMed  Google Scholar 

  10. Lumpkin M.D., Samson W.K., McCann S.M. Hypothalamic and pituitary sites of action of oxytocin to alter prolactin secretion in the rat. Endocrinology 112: 1711, 1983.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas G.B., Cummins J.T., Griffin N., Clarke I.J. Effect and site of action of hypothalamic neuropeptides on prolactin release in sheep. Neuroendocrinology 48: 252, 1988.

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki F., Iwana Y. Correlation of spatial differences in concentrations of prolactin and growth hormone cells with vascular pattern in the female mouse adenohypophysis. Endocrinology 122: 1622, 1988.

    Article  CAS  PubMed  Google Scholar 

  13. Fumagalli G., Zanini A. In cow anterior pituitary, growth hormone and prolactin can be packed in separate granules of the same cell. J. Cell. Biol. 100: 2019, 1985.

    Article  CAS  PubMed  Google Scholar 

  14. De la Cruz L.F., Guerrero F., Moya L., Rueda V. Immunoelectron microscopic study of somatotropic and lactotropic cells. GHRH influence. In: De la Cruz L.F., García Lara M.T. (Eds.), Recent Advances in Growth and Reproduction. Servicio de Publicaciones de la Universidad de Santiago de Compostela. Santiago de Compostela, 1990, p. 45.

    Google Scholar 

  15. Thorpe J.R., Ray K.P., Wallis M. Occurrence of rare somatomammotrophs in ovine anterior pituitary tissue studied by immunogold labelling and electron microscopy. J. Endocrinol. 124: 67, 1990.

    Article  CAS  PubMed  Google Scholar 

  16. Thorpe J.R., Wallis M. Immunocytochemical and morphometric studies of mammotrophs, somatotrophs and somatomammotrophs in sheep pituitary cell cultures. J. Endocrinol. 129: 417, 1991.

    Article  CAS  PubMed  Google Scholar 

  17. Kineman R.D., Faught W.J., Frawle L.S. The ontogenic and functionally relationships between growth hormone- and prolactin-releasing cells during the development of the bovine pituitary. J. Endocrinol. 134: 91, 1992.

    Article  CAS  PubMed  Google Scholar 

  18. Kineman R.D., Faught W.J., Frawley L.S. Mammosomatotropes are abundant in bovine pituitaries: influence of gonadal status. Endocrinology 128: 2229, 1991.

    Article  CAS  PubMed  Google Scholar 

  19. Forsyth I.A. Variation among species in the endocrine control of mammary growth and function: the roles of prolactin, growth hormone, and placental lactogen. J. Dairy Sci. 69: 886, 1984.

    Article  Google Scholar 

  20. Sasaki F., Iwana Y. Sex difference in prolactin and growth hormone cells in mouse adenohypophysis: stereological, morphometric, and immunohistochemical studies by light and electron microscopy. Endocrinology 123: 905, 1988.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu S.M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and immunolabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29: 577,1981.

    Article  CAS  PubMed  Google Scholar 

  22. Stefaneanu L., Kovacs K., Horvath E., Clark R.G., Cronin M.J. Effect of intravenous infusion of growth hormone-releasing hormone on the morphology of rat pituitary somatotrophs. Endocr. Pathol. 4: 131, 1993.

    Article  Google Scholar 

  23. Ingram C.D., Bicknell R.J. Synergistic interaction in bovine pituitary cultures between growth hormone-releasing factor and other hypophysiotrophic factors. J. Endocrinol. 109: 67, 1986.

    Article  CAS  PubMed  Google Scholar 

  24. Hart G.R., Ray K.P., Wallis M. Mechanisms involved in the effects of TRH on GHRH-stimulated growth hormone release from ovine and bovine pituitary cells. Mol. Cell. Endocrinol. 56: 53, 1988.

    Article  CAS  PubMed  Google Scholar 

  25. Fukata J., Diamond D.J., Martin J.B. Effects of rat growth hormone (rGH)-releasing factor and somatostatin on the release and synthesis of rGH in dispersed pituitary cells. Endocrinology 117: 457, 1985.

    Article  CAS  PubMed  Google Scholar 

  26. Engström K.G., Ohlsson L. Acute and long-term biphasic volume alterations in rat type-ll somatotrophs during GH secretory stimulation. Biochim. Biophys. Acta 1135: 318, 1992.

    Article  PubMed  Google Scholar 

  27. Perez F.M., Malamed S., Scane C.G. Growth hormone release from chicken anterior pituitary cells in primary culture: TRH and hpGRF synergy, protein synthesis, and cyclic adenosine 3’5’- monophosphate. Gen. Comp. Endocrinol. 73: 12, 1989.

    Article  CAS  PubMed  Google Scholar 

  28. Goth M.I., Lyons C.E., Canny B.J., Thome M.O. Pituitary adenylate cyclase activating polypeptide, growth hormone (GH)-releasing peptide and GH-releasing hormone stimulate GH release through distinct pituitary receptors. Endocrinology 130: 939, 1992.

    CAS  PubMed  Google Scholar 

  29. Pasolli H.A., Torres A.I., Aoki A. Influence of lactotroph cell density on prolactin secretion in rats. J. Endocrinol. 134: 241, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Kotsuji F., Hosokawa K., Tominaga T. Daily administration of gonadotrophin-releasing hormone increases pituitary gonadotroph number and pituitary gonadotrophin content, but not serum gonadotropin levels, in female rats on day 1 of dioestrus. J. Endocrinol. 132: 395, 1992.

    Article  CAS  PubMed  Google Scholar 

  31. Tanner J.W., Davis S.K., McArthur N.H., French J.T., Welsh Jr T.H. Modulation of growth hormone (GH) secretion and GH mRNA levels by GH-releasing factor, somatostatin and secretagogues in cultured bovine adenohypophysial cells. J. Endocrinol. 125: 109, 1990.

    Article  CAS  PubMed  Google Scholar 

  32. Barinaga M., Bilezikjian L.M., Vale W.W., Rosenfeld M.G., Evans R.M. Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature 314: 279, 1985.

    Article  CAS  PubMed  Google Scholar 

  33. Theill L.E., Karin M. Transcriptional control of GH expression and anterior pituitary development. Endocr. Rev. 14: 670, 1993.

    CAS  PubMed  Google Scholar 

  34. Nagata S., Rosenfeld M.G., Inoue K. Development of prolactin and growth hormone production in the fetal rat pituitary: an immunochemical study. Develop. Growth & Differ. 34: 473, 1992.

    Article  CAS  Google Scholar 

  35. Barinaga. M., Yamamoto G., Rivier C., Vale W., Evans R., Rosenfeld M.G. Transcriptional regulation of growth hormone gene expression by growth hormone releasing factor. Nature 306: 84, 1983.

    Article  CAS  PubMed  Google Scholar 

  36. Ohlsson L, Lindström P., Norlund R. An ultrastructural and functional characterization of rat somatotrophs highly enriched on a continuous Percoll density gradient. Mol. Cell. Endocrinol. 59: 47,1988.

    Article  CAS  PubMed  Google Scholar 

  37. Boockfor F.R., Hoeffler J.P., Frawley L.S. Analysis by plaque assays of GH and prolactin release from individual cells in cultures of male pituitaries. Neuroendocrinology 42: 64, 1986.

    Article  CAS  PubMed  Google Scholar 

  38. Kineman R.D., Faught W.J., Frawley L.S. Bovine pituitary cells exhibit a unique form of somatotrope secretory heterogeneity. Endocrinology 127: 2229, 1990.

    Article  CAS  PubMed  Google Scholar 

  39. Perez F.M., Hymer W.C. A new tissue-slicing method for:he study of function and position of somatotrophs contained within the male rat pituitary gland. Endocrinology 127: 1877, 1990

    Article  CAS  PubMed  Google Scholar 

  40. Sarkar D.K., Gibbs D.M. Cyclic variation of oxytocin in the blood of pituitary portal vessels of rats. Neuroendocrinology 39: 481, 1984.

    Article  CAS  PubMed  Google Scholar 

  41. Mogg R.J., Samson W.K. Interactions of dopaminergic and peptidergic factors in the control of prolactin release. Endocrinology 126: 728, 1990.

    Article  CAS  PubMed  Google Scholar 

  42. Nikitovitch-Winer M.B., Atkin J. Maley B.E. Colocalization of prolactin and growth hormone within specific adenohypophyseal cells in male, female, and lactating female rats. Endocrinology 121: 625, 1987.

    CAS  Google Scholar 

  43. Hashimoto S., Fumagalli G., Zanini AA., Meldolesi J. Sorting of three secretory proteins to distintc secretory granules in acidophilic ce Is of cow anterior pituitary. J. Cell Biol. 105: 1579, 1987.

    Article  CAS  PubMed  Google Scholar 

  44. Kineman R.D., Henricks D.M., Faught W.J., Frawley L.S. Fluctuations in the proportions of growth hormone-and prolactin-secreting cells during the bovine estrous cycle. Endocrinology 129: 1221, 1991.

    Article  CAS  PubMed  Google Scholar 

  45. Portev T.E., Hill J.B., Wile C.D., Frawley L.S. Is the mammosomatotrope a transitional cell for the functional interconversion of growth hormone- and prolactin-secreting cells? Suggestive evidence from virgin, gestating, and lactating rats. Endocrinology 127: 2789, 1990.

    Article  Google Scholar 

  46. Boockfor F.R., Hoeffler J.P., Frawley L.S. Estradiol induces a shift in cultured cells that release prolactin or growth hormone. Am. J. Physiol. 250: E103, 1986.

    CAS  PubMed  Google Scholar 

  47. Pasolli H.A., Torres A.I., Aoki A. The mammosomatotroph: a transitional cell between growth hormone and prolactin producing cells? An immunocytochemical study. Histochemistry 102: 287, 1994.

    Article  CAS  PubMed  Google Scholar 

  48. Frawley L.S., Boockfor F.R., Hoefflev J.P. Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin. Endocrinology 116: 734, 1985.

    Article  CAS  PubMed  Google Scholar 

  49. Leong D.A., Lau S.K., Sinha Y.N., Kaiser D.L., Thorner M.O. Enumeration of lactotropes and somatotropes among male and female pituitary cells in culture: evidence in favor of a mammosomatotrope subpopulation in the rat. Endocrinology 116: 1371, 1985.

    Article  CAS  PubMed  Google Scholar 

  50. Neill J.D., Smith P.F., Luque E.H., Munoz de Toro M., Nagy G., Mulchahey J.J. Detection and measurement of hormone secretion from individual pituitary cells. Rec. Prog. Horm. Res. 43: 175, 1987.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, M., Vidal, S., Lorenzo, M.T. et al. Effects of acute administration of growth hormone-releasing hormone (GHRH) and oxytocin on somatotroph cells in sheep: Morphometric study and growth hormone (GH) secretion. J Endocrinol Invest 18, 442–449 (1995). https://doi.org/10.1007/BF03349743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349743

Key-words

Navigation