Skip to main content
Log in

The relation of adiponectin and tumor necrosis factor α levels between endothelial nitric oxide synthase, angiotensin-converting enzyme, transforming growth factor β, and tumor necrosis factor α gene polymorphism in adrenal incidentalomas

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: The aim of our study was to demonstrate demographic characteristics, presence of inflammatory markers, distribution of angiotensin-converting enzyme (ACE), tumor necrosis factor (TNF), endothelial nitric oxide synthase (eNOS) genotypes and relations among these parameters in these patients and control subjects. Research design and methods: Study samples were collected from 50 patients with adrenal mass and 30 control groups. The eNOS, ACE, TNF-α, transforming growth factor (TGF)-β genes polymorphisms, TNF-α, adiponectin levels were analysed in 50 unrelated Turkish patients with a diagnosis of adrenal incidentaloma (AI). Results: There was statistically significant difference between TNF-α levels of patient and controls (p=0.048). We have not detected the connection between TGF-β, TNF-α, ACE, eNOS gene polymorphism with serum TNF-α and adiponectin levels. In this study, we demonstrated that there were significant differences for ACE genotypes in the patients when compared to the controls (p<0.05). The percentages of the ID, DD, II genotypes for ACE gene polymorphism in the patients group were 30.0, 13.0, 7.0%, respectively. Conclusions: According to different cases of eNOS, TGF-β, ACE, and TNF-α gene genotypes; no statistical significant difference was found between basal cortisol, ACTH, DHEAS, metanephrine, renin, aldosterone, normetanephrine, 17-hydroxyprogesterone, 1 mg low-dose dexamethasone suppression test-cortisol response and AI size. In this study, I/D genotype was determined to be statistically higher in ACE gene in patients with AI (p=0.014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young WF Jr. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007, 356: 601.

    Article  PubMed  CAS  Google Scholar 

  2. Legierska K, Janowska M, Szewieczek J, Dutawa J. Clinical characteristics of 33 patients with adrenal incidentaloma. Wiad Lek 2006, 59: 790–6.

    PubMed  Google Scholar 

  3. Reincke M, Fassnacht M, Väth S, Mora P, Allolio B. Adrenal incidentalomas: a manifestation of the metabolic syndrome? Endocr Res 1996, 22: 757–61.

    PubMed  CAS  Google Scholar 

  4. Mesiano S, Mellon SH, Jaffe RB. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 1993, 76: 968–76.

    PubMed  CAS  Google Scholar 

  5. Pillion DJ, Arnold P, Yang M, Stockard CR, Grizzle WE. Receptors for insulin and insulin-like growth factor-I in the human adrenal gland. Biochem Biophys Res Commun 1989, 165: 204–11.

    Article  PubMed  CAS  Google Scholar 

  6. Penhoat A, Chatelain PG, Jaillard C, Saez JM. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function. Endocrinology 1988, 122: 2518–26.

    CAS  Google Scholar 

  7. Heyninck K, Beyaert R. Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun 2001, 4: 259–65.

    Article  PubMed  CAS  Google Scholar 

  8. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11: 372–7.

    Article  PubMed  CAS  Google Scholar 

  9. Bernardini R, Kamilaris TC, Calogero AE, et al. Interactions between tumor necrosis factor-alpha, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology 1990, 126: 2876–81.

    Article  PubMed  CAS  Google Scholar 

  10. Sharp BM, Matta SG, Peterson PK, Newton R, Chao C, Mcallen K. Tumor necrosis factor-alpha is a potent ACTH secretagogue: comparison to interleukin-1beta. Endocrinology 1989, 124: 3131–3.

    Article  PubMed  CAS  Google Scholar 

  11. González-Hernández JA, Ehrhart-Bornstein M, Späth-Schwalbe E, Scherbaum WA, Bornstein SR. Human adrenal cells express tumor necrosis factor-alpha messenger ribonucleic acid: evidence for paracrine control of adrenal function. J Clin Endocrinol Metab 1996, 81: 807–13.

    PubMed  Google Scholar 

  12. Jäättelä M, Ilvesmäki V, Voutilainen R, Stenman UH, Saksela E. Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 1991, 128: 623–9.

    Article  PubMed  Google Scholar 

  13. Voutilainen R. Adrenocortical cells are the site of secretion and action of insulin-like growth factors and TNF-alpha. Horm Metab Res 1998, 30: 432–5.

    Article  PubMed  CAS  Google Scholar 

  14. Kim HR, Lee MK, Park AJ. The -308 and -238 Polymorphisms of the TNF-alpha Promoter Gene in Type 2 Diabetes Mellitus. Korean J Lab Med 2006, 26: 58–63.

    Article  PubMed  CAS  Google Scholar 

  15. Fontaine-Bisson B, Wolever TM, Chiasson JL, et al. Tumor necrosis factor alpha −238G>A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. Metabolism 2007, 56: 649–55.

    Article  PubMed  CAS  Google Scholar 

  16. Santos MJL, Patiño GA, Angel BB, et al. Association between tumor necrosis factor-alpha promoter polymorphisms and type 2 diabetes and obesity in Chilean elderly women. Rev Med Chil 2006, 134: 1099–106.

    Article  Google Scholar 

  17. Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997, 82: 359–63.

    PubMed  CAS  Google Scholar 

  18. Higaki Y, Hirshman MF, Fujii N, Goodyear LJ. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 2001, 50: 241–7.

    Article  PubMed  CAS  Google Scholar 

  19. Pieper GM. Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia 1999, 42: 204–13.

    Article  PubMed  CAS  Google Scholar 

  20. Baghai TC, Binder EB, Schule C, et al. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol Pyschiatry 2006, 11: 1003–15.

    Article  CAS  Google Scholar 

  21. Sciarretta S, Ferrucci A, Ciavarella GM, et al. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am J Hypertens 2007, 20: 784–91.

    Article  PubMed  CAS  Google Scholar 

  22. Grumbach MM, Biller BM, Braunstein GD, et al. Management of the clinically inapparent adrenal mass (“Incidentaloma”). Ann Intern Med 2003, 138: 424–9.

    Article  PubMed  Google Scholar 

  23. Mantero F, Fallo F, Opocher G, Armanin D, Boscaro M, Scaroni C. Effect on angiotensin II and convertine-enzyme inhibitor (captopril) on blood pressure, PRA and aldosterone in primary aldosteronism. Clin Sci (Lond) 1981, 61: 289S–93S.

    CAS  Google Scholar 

  24. Findling JW, Raff H. Newer diagnostic techniques and problems in Cushing’s disease. Endocrinol Metab Clin North Am 1999, 28: 191–210.

    Article  PubMed  CAS  Google Scholar 

  25. Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl caboxypeptidase 1). Nucleic Acids Res 1992, 20: 1433.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Shanmugam V, Sell KW, Saha BK. Mistyping ACE heterozygotes. PCR Methods Appl 1993, 3: 120–1.

    Article  PubMed  CAS  Google Scholar 

  27. Hingorani AD, Liang CF, Fatibene J, et al. A common variant of the endothelial nitric oxide synthase (Glu28⇢Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999, 100: 1515–20.

    Article  PubMed  CAS  Google Scholar 

  28. Agarwal P, Oldenburg MC, Czarneski JE, et al. Comparison study for identifying promoter allelic polymorphism in interleukin 10 and tumor necrosis factor alpha genes. Diagn Mol Pathol 2002, 9: 158–64.

    Article  Google Scholar 

  29. Rust S, Funke H, Assmann G. Mutagenically separated PCR (MS-PCR): a highly specific one-step procedure for easy mutation detection. Nucleic Acids Res 1993, 21: 3623–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Terzolo M, Pia A and All A, et al. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 2002, 87: 998–1003.

    Article  PubMed  CAS  Google Scholar 

  31. Osella G, Terzolo M, Borretta G, et al. Endocrine evaluation of incidentally discovered adrenal masses. J Clin Endocrinol Metab 1994: 1532–9.

  32. Ambrosi B, Peverelli S and Passini E, et al. Abnormalities of endocrine function in patients with clinically “silent” adrenal masses. Eur J Endocrinol 1995, 132: 422–8.

    Article  PubMed  CAS  Google Scholar 

  33. Rossi R, Tauchmanovà L, Luciano A, et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab 2000, 85: 1440–8.

    PubMed  CAS  Google Scholar 

  34. Midorikawa S, Sanada H, Hashimoto S, Suzuki T, Watanabe T. The improvement of insulin resistance in patients with adrenal incidentaloma by surgical resection. Clin Endocrinol 2001, 54: 797–804.

    Article  CAS  Google Scholar 

  35. Darling G, Goldstein DS, Stull R, Gorschboth CM, Norton JA. Tumor necrosis factor: immune endocrine interaction. Surgery 1989, 106: 1155–60

    PubMed  CAS  Google Scholar 

  36. van der Meer MJ, Sweep CG, Rijnkels CE, et al. Acute stimulation of the hypothalamic-pituitary-adrenal axis by IL-1 beta, TNFalpha and IL-6: a dose response study. J Endocrinol Invest 1996, 19: 175–82.

    Article  PubMed  Google Scholar 

  37. Jäättelä M, Carpén O, Stenman UH, Saksela E. Regulation of ACTH-induced steroidogenesis in human fetal adrenals by rTNF-alpha. Mol Cell Endocrinol 1990, 68: R31–6.

    Article  PubMed  Google Scholar 

  38. Natarajan R, Ploszaj S, Horton R, Nadler J. Tumor necrosis factor and interleukin-1 are potent inhibitors of angiotensin-II-induced aldosterone synthesis. Endocrinology 1989, 125: 3084–9.

    Article  PubMed  CAS  Google Scholar 

  39. Mantero F, Masini AM, Opocher G, Giovagnetti M, Arnaldi G. Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res 1997, 47: 284–9.

    Article  PubMed  CAS  Google Scholar 

  40. Rossi R, Tauchmanova L, Luciano A, et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab 2000, 85: 1440–8.

    PubMed  CAS  Google Scholar 

  41. Tunny TJ, Xu L, Richardson KA, Stowasser M, Gartside M, Gordon RD. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene and loss of the insertion allele in aldosterone-producing adenoma. J Hum Hypertens 1996, 10: 827–30.

    PubMed  CAS  Google Scholar 

  42. Baghai TC, Schule C, Zwanzger P, et al. Hypothalamic-pituitaryadrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci Lett 2002, 328: 299–303.

    Article  PubMed  CAS  Google Scholar 

  43. Hanke CJ, O’Brien T, Pritchard KA Jr, Campbell WB. Inhibition of adrenal cell aldosterone synthesis by endogenous nitric oxide release. Hypertension 2000, 35: 324–8.

    Article  PubMed  CAS  Google Scholar 

  44. Peterson JK, Moran F, Conley AJ, Bird IM. Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex. Endocrinology 2001, 142: 5351–63.

    Article  PubMed  CAS  Google Scholar 

  45. Lehmann TP, Biernacka-Lukanty JM, Trzeciak WH, Li JY. Steroidogenic factor 1 gene transcription is inhibited by transforming growth factor beta. Endocr Res 2005, 31: 71–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karadeniz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harman, E., Karadeniz, M., Biray, C. et al. The relation of adiponectin and tumor necrosis factor α levels between endothelial nitric oxide synthase, angiotensin-converting enzyme, transforming growth factor β, and tumor necrosis factor α gene polymorphism in adrenal incidentalomas. J Endocrinol Invest 32, 881–888 (2009). https://doi.org/10.1007/BF03345766

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345766

Keywords

Navigation