Skip to main content
Log in

A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to a novel CYP21 mutation

  • Case Report
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

A 31-yr-old woman presenting with a history of hirsutism, amenorrhea, and infertility was previously assumed to have polycystic ovary syndrome. A new gynecological-endocrine evaluation demonstrated elevated testosterone/SHBG ratio, serum 17-hydrox-yprogesterone (17-OHP), and urinary pregnantriol. She was diagnosed with non-classic congenital adrenal hyperplasia. In spite of treatment with dexamethasone and fludrocortisone in doses that suppressed adrenal androgens and 17-OHP into normal range or below, she did not ovulate. Clomiphene citrate and then FSH/hCG treatment in several cycles gave no consistent ovulation. Progesterone levels remained elevated throughout the cycles indicating a possible contribution from the adrenals. Oral glucose tolerance was normal, but the homeostasis model assessment index indicated insulin resistance. With metformin 1500 mg daily the index decreased remarkably from 2.77 to 0.96 with a few ovulations but no pregnancy occurred. Three cycles of IVF treatment thereafter were unsuccessful. Three months after the last in vitro fertilization (IVF) cycle, still on dexamethasone, fludrocortisone, and metformin, her menstruations became regular and she thereafter became pregnant. During pregnancy metformin was discontinued and dexamethasone replaced with prednisolone. Mild gestational diabetes developed and insulin was given. A healthy boy was born at term by elective Cesarean section. A CYP21-gene analysis had not indicated any of the known mutations but after gene sequencing a novel mutation was found, namely R233G. This case confirms the necessity of adding an analysis of 17-OHP when evaluating women with hirsutism and menstrual disturbances and if an elevated value is found, the advantage of performing a mutation analysis to facilitate counseling and decisions on treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985, 37: 650–67.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Kuttenn F, Couillin P, Girard F, et al. Late-onset adrenal hyperplasia in hirsutism. N Engl J Med 1985, 313: 224–31.

    Article  PubMed  CAS  Google Scholar 

  3. Azziz R, Sanchez LA, Knochenhauer ES, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab 2004, 89: 453–62.

    Article  PubMed  CAS  Google Scholar 

  4. Falhammar H, Thorén M. An 88-year-old woman diagnosed with adrenal tumor and congenital adrenal hyperplasia: connection or coincidence? J Endocrinol Invest 2005, 28: 449–53.

    Article  PubMed  CAS  Google Scholar 

  5. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-Hydoxylase Deficiency. Endocr Rev 2000, 21: 245–91.

    PubMed  CAS  Google Scholar 

  6. Moran C, Azziz R, Carmina E, et al. 21-Hydroxylase-deficient nonclassical adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 2000, 183: 1468–74.

    Article  PubMed  CAS  Google Scholar 

  7. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 1998, 47: 1643–9.

    Article  PubMed  CAS  Google Scholar 

  8. Robins T, Carlsson J, Sunnerhagen M, Wedell A, Persson B. Molecular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia. Mol Endocrinol 2006, 20: 2946–64.

    Article  PubMed  CAS  Google Scholar 

  9. Wedell A, Luthman H. Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutation. Hum Mol Genet 1993, 2: 499–504.

    Article  PubMed  CAS  Google Scholar 

  10. Axelson M, Sahlberg BL, Sjövall J. Analysis of profiles of conjugated steroids in urine by ion-exchange separation and gas chromatography-mass spectrometry. J Chromatogr 1981, 224: 355–70.

    Article  CAS  Google Scholar 

  11. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostatis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28: 412–9.

    Article  PubMed  CAS  Google Scholar 

  12. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome; towards a rational approach. In: Dunaif A, Givena JR, Haseltine F. eds. Polycystic ovary syndrome. Boston: Blackwell Scientific 1992, 377–84.

    Google Scholar 

  13. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long term health risks related to polycystic ovary syndrome. Fertil Steril 2004, 81: 19–25.

    Google Scholar 

  14. Azziz R, Carmina E, Dewailly D, et al. Position statement: criteria for defining polycystic ovary syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 2006, 91: 4237–45.

    Article  PubMed  CAS  Google Scholar 

  15. Lobo RA, Goebelsmann U. Adult manifestation of congenital adrenal hyperplasia due to incomplete 21-hydoxylase deficiency mimicking polycystic ovarian disease. Am J Obstet Gynecol 1980, 138: 720–6.

    PubMed  CAS  Google Scholar 

  16. New MI. Nonclassical congenital adrenal hyperplasia and the polycystic ovarian syndrome. Ann N Y Acad Sci 1993, 687: 193–205.

    Article  PubMed  CAS  Google Scholar 

  17. Kamel N, Tonyukuk V, Emral R, Corapcioglu D, Bastemir M, Güllü S. The prevalence of late onset congenital adrenal hyperplasia in hirsute women from central Anatolia. Endocrin J 2003, 50: 815–23.

    Article  CAS  Google Scholar 

  18. Benjamin F, Deutsch S, Saperstein H, Seltzer VL. Prevalence of and markers for attenuated form of congenital adrenal hyperplasia and hyperprolactinemia masquerading as polycystic ovarian disease. Fertil Steril 1986, 46: 215–21.

    PubMed  CAS  Google Scholar 

  19. Cobin RH, Futterweit W, Fiedler RP, Thornton JC. Adrenocorticotropic hormone testing in idiopathic hirsutism and polycystic ovarian disease: a test of limited usefulness. Fertil Steril 1985, 44: 224–6.

    PubMed  CAS  Google Scholar 

  20. Bachega T, Billerbeck A, Marcondes J, Madureira G, Arnold I, Mendonca B. Influence of different genotypes on 17-hydoxyprogesterone levels in patients with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin Endocrinol (Oxf) 2000, 52: 601–7.

    Article  CAS  Google Scholar 

  21. Speiser PW, Serrat J, New MI, Gerner JM. Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992, 75: 1421–4.

    PubMed  CAS  Google Scholar 

  22. Saygili F, Oge A, Yilmaz C. Hyperinsulinemia and insulin insensitivity in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency: the relationship between serum leptin levels and chronic hyperinsulinemia. Horm Res 2005, 63: 270–4.

    Article  PubMed  CAS  Google Scholar 

  23. Dunaif A. Insulin resistance and polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997, 18: 774–800.

    PubMed  CAS  Google Scholar 

  24. Livingstone C, Collison M. Sex steroids and insulin resistence. Clin Sci (Lond) 2002, 102: 151–66.

    Article  CAS  Google Scholar 

  25. Siebert TI, Kruger TF, Steyn DW, Nosarka S. Is the addition of metformin efficacious in the treatment of clomiphene citrate-resistant patients with polycystic ovary syndrome? A structured literature review. Fertil Steril 2006, 86: 1432–7.

    Article  PubMed  CAS  Google Scholar 

  26. Feldman S, Billaud L, Thalabard JC, et al. Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992, 74: 635–9.

    PubMed  CAS  Google Scholar 

  27. Helleday J, Siwers B, Ritzén EM, Carlström K. Subnormal androgens and elevated progesterone levels in women treated for congenital virilizing 21-hydroxylase deficiency. J Clin Endocrinol Metab 1993, 76: 933–6.

    PubMed  CAS  Google Scholar 

  28. Wedell A, Thilén A, Ritzén EM, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 1994, 78: 1145–52.

    PubMed  CAS  Google Scholar 

  29. Jääskeläinen J, Levo A, Voutilainen R, Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J Clin Endocrinol Metab 1997, 82: 3293–7.

    PubMed  Google Scholar 

  30. Speiser PW, New MI, White PC. Molecular genetic analysis of nonclassical 21-hydoxylase deficiency associated with HLA-B14,DR1. N Engl J Med 1988, 319: 19–23.

    Article  PubMed  CAS  Google Scholar 

  31. Owerbach D, Sherman L, Ballard AL, Azziz R. Pro-453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol Endocrinol 1992, 6: 1211–5.

    PubMed  CAS  Google Scholar 

  32. Wedell A, Ritzén ME, Haglund-Stengler B, Luthman H. Steroid 21-hydroxylase deficiency: three mutated alleles and establishment of phenotype-genotype relationships of common mutations. Proc Natl Acad Sci U S A 1992, 89: 7232–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Tunsie-Luna MT, Speiser PW, Dumic M, New MI, White PC. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol 1991, 5: 685–92.

    Article  Google Scholar 

  34. Nikoshkov A, Lajic S, Holst M, Wedell A, Luthman H. Synergistic effect of partially inactivated mutations in steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1997, 82: 194–9.

    PubMed  CAS  Google Scholar 

  35. Helmberg A, Tusie-Luna MT, Tabarelli M, Kofler R, White PC. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydoxylase deficiency that are not apparent gene conversion. Mol Endocrinol 1992, 6: 1318–22.

    PubMed  CAS  Google Scholar 

  36. Lajic S, Clauin S, Robins T, et al. Novel mutations in CYP21 detected in individuals with hyperandrogenism. J Clin Endocrinol Metab 2002, 87: 2824–9.

    Article  PubMed  CAS  Google Scholar 

  37. Moran C, Azziz R, Weintrob N, et al. Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J Clin Endocrinol Metab 2006, 91: 3451–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Falhammar MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falhammar, H., Thorén, M. & Hagenfeldt, K. A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to a novel CYP21 mutation. J Endocrinol Invest 31, 176–180 (2008). https://doi.org/10.1007/BF03345586

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345586

Key Words

Navigation