Skip to main content
Log in

Nitrotyrosine, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) are increased in thyroid tumors from children and adolescents

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a reactive cell signal that controls vascular tone and is generated by inducible (iNOS), endothelial (eNOS) and neuronal (nNOS) NO synthase (NOS). We hypothesized that NO could be important for growth of thyroid tumors and tested this hypothesis, by staining 41 papillary thyroid carcinoma (PTC), 9 follicular thyroid carcinoma (FTC), and 15 benign thyroid lesions for iNOS, eNOS and nitrotyrosine (N-TYR). Staining intensity was determined by 2 blinded, independent examiners, and quantified from grade 1 (absent) to grade 4 (intense). Average N-TYR staining of benign adenomas (2.5±0.42, p=0.009), PTC (3.10±0.12, p=0.001), FTC (2.44±0.30, p=0.001), and autoimmune lesions (3.25±0.48, p=0.019) were greater than that of multinodular goiter (1.0 for all 3) and surrounding normal thyroid (1.1±0.1). Average iNOS staining of benign adenomas (2.6±0.37), PTC (2.7±0.16), FTC (2.4±0.26) and autoimmune lesions (3.5±0.29) were all greater than that of surrounding normal thyroid (1.1±0.1, p<0.008), but there were too few multinodular goiters to achieve a significant difference (no.=2, 3.0±1.0). Average eNOS staining of benign adenomas (2.9±0.40), multinodular goiters (3.5±0.5), PTC (3.24±0.18), FTC (3.5±0.50), and autoimmune lesions (2.8±0.6) were also greater than that of surrounding normal thyroid (mean= 1.4±0.2, p<0.001). N-TYR staining correlated with that of vascular endothelial growth factor (VEGF, r=0.36, p=0.007) and the number of lymphocytes/high power field (r=0.39, p=0.004). Recurrent disease developed only from carcinoma with moderate-intense N-TYR staining, but there were too few recurrent tumors to achieve statistical significance (p=0.08). We conclude that NO is produced by benign adenomas, PTC and FTC suggesting that NO could be important in vascularization of thyroid tumors and autoimmune thyroid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins D.C., Charles I.G., Thomsen L.L., et al. Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 4392–4396.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Thomsen L.L., Miles D.W., Happerfield L., Bobrow L.G., Knowles R.G., Moncada S. Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 1995, 72: 41–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Ambs S., Merriam W.G., Bennett W.P., et al. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998, 58: 334–341.

    PubMed  CAS  Google Scholar 

  4. Meyer R.E., Shan S., DeAngelo J., et al. Nitric oxide synthase inhibition irreversibly decreases perfusion in the R3230Ac rat mammary adenocarcinoma. Br. J. Cancer 1995, 71: 1169–1174.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Bakshi A., Nag T.C., Wadhwa S., Mahapatra A.K., Sarkar C. The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J. Neurol. Sci. 1998, 155: 196–203.

    Article  PubMed  CAS  Google Scholar 

  6. Fujimoto H., Ando Y., Yamashita T., et al. Nitric oxide synthase activity in human lung cancer. Jpn. J. Cancer Res. 1997, 88: 1190–1198.

    Article  PubMed  CAS  Google Scholar 

  7. Colin I.M., Nava E., Toussaint D., et al. Expression of nitric oxide synthase isoforms in the thyroid gland: evidence for a role of nitric oxide in vascular control during goiter formation. Endocrinology 1995, 136: 5283–5290.

    PubMed  CAS  Google Scholar 

  8. Colin I.M., Kopp P., Zbaren J., Haberli A., Grizzle W.E., Jameson J.L. Expression of nitric oxide synthase III in human thyroid follicular cells: evidence for increased expression in hyperthyroidism. Eur. J. Endocrinol. 1997, 136: 649–655.

    Article  PubMed  CAS  Google Scholar 

  9. Kojima M., Morisaki T., Tsukahara Y., et al. Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J. Surg. Oncol. 1999, 70: 222–229.

    Article  PubMed  CAS  Google Scholar 

  10. Yamamoto T., Terada N., Seiyama A., Nishizawa Y., Akedo H., Kosaka H. Increase in experimental pulmonary metastasis in mice by L-arginine under inhibition of nitric oxide production by NG-nitro-L-arginine methyl ester. Int. J. Cancer 1998, 75: 140–144.

    Article  PubMed  CAS  Google Scholar 

  11. Andrew P.J., Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 1999, 43: 521–531.

    Article  PubMed  CAS  Google Scholar 

  12. Amin A.R., Attur M., Abramson S.B. Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 1999, 11: 202–209.

    Article  PubMed  CAS  Google Scholar 

  13. Martin J.H., Begum S., Alalami O., Harrison A., Scott K.W. Endothelial nitric oxide synthase: correlation with histologic grade, lymph node status and estrogen receptor expression in human breast cancer. Tumour Biol. 2000, 21: 90–97.

    Article  PubMed  CAS  Google Scholar 

  14. Tschugguel W., Schneeberger C., Unfried G., et al. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res. Treat. 1999, 56: 145–151.

    Article  PubMed  CAS  Google Scholar 

  15. Martin J.H., Alalami O., van den Berg H.W. Reduced expression of endothelial and inducible nitric oxide synthase in a human breast cancer cell line which has acquired estrogen independence. Cancer Lett. 1999, 144: 65–74.

    Article  PubMed  CAS  Google Scholar 

  16. Iwasaki T., Higashiyama M., Kuriyama K., et al. NG-nitro-Larginine methyl ester inhibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model. Jpn. J. Cancer Res. 1997, 88: 861–866.

    Article  PubMed  CAS  Google Scholar 

  17. Kayser L., Francis D., Broholm H. Immunohistochemical localization of inducible and endothelial constitutive nitric oxide synthase in neoplastic and autoimmune thyroid disorders. A.P.M.I.S. 2000, 108: 785–791.

    CAS  Google Scholar 

  18. Kitano H., Kitanishi T., Nakanishi Y., et al. Expression of inducible nitric oxide synthase in human thyroid papillary carcinomas. Thyroid 1999, 9: 113–117.

    Article  PubMed  CAS  Google Scholar 

  19. Costamagna M.E., Cabanillas A.M., Coleoni A.H., Pellizas C.G., Masini-Repiso A.M. Nitric oxide donors inhibit iodide transport and organification and induce morphological changes in cultured bovine thyroid cells. Thyroid 1998, 8: 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  20. Millatt L.J., Johnstone A.P., Whitley G.S. Nitric oxide enhances thyroid peroxidase activity in primary human thyrocytes. Life Sci. 1998, 63: L373–380.

    Article  Google Scholar 

  21. Haluzik M., Nedvidkova J., Schreiber V., Jahodova J. The effect of an NO-synthase inhibitor, methylene blue, on the function of certain endocrine glands. Sb. Lek. 1997, 98: 267–276.

    PubMed  CAS  Google Scholar 

  22. Motohashi S., Kasai K., Banba N., Hattori Y., Shimoda S. Nitric oxide inhibits cell growth in cultured human thyrocytes. Life Sci. 1996, 59: L227–L234.

    Article  Google Scholar 

  23. Kasai K., Hattori Y., Nakanishi N., et al. Regulation of inducible nitric oxide production by cytokines in human thyrocytes in culture. Endocrinology 1995, 136: 4261–4270.

    PubMed  CAS  Google Scholar 

  24. Millatt L.J., Jackson R., Williams B.C., Whitley G.S. Nitric oxide stimulates cyclic GMP in human thyrocytes. J. Mol. Endocrinol. 1993, 10: 163–169.

    Article  PubMed  CAS  Google Scholar 

  25. Esteves R.Z., van Sande J., Dumont J.E. Nitric oxide as a signal in thyroid. Mol. Cell Endocrinol. 1992, 90: R1–R3.

    Article  PubMed  CAS  Google Scholar 

  26. Haluzik M., Nedvidkova J., Kopsky V., Jahodova J., Horejsi B., Schreiber V. The changes of the thyroid function and serum testosterone levels after long-term L-NAME treatment in male rats. J. Endocrinol. Inv. 1998, 21: 234–238.

    Article  CAS  Google Scholar 

  27. Mannick E.E., Bravo L.E., Zarama G., et al. Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res. 1996, 56: 3238–3243.

    PubMed  CAS  Google Scholar 

  28. Kojima M., Morisaki T., Tsukahara Y., et al. Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J. Surg. Oncol. 1999, 70: 222–229.

    Article  PubMed  CAS  Google Scholar 

  29. Vickers S.M. MacMillan-Crow L.A., Green M., Ellis C., Thompson J.A. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch. Surg. 1999, 134: 245–251.

    Article  PubMed  CAS  Google Scholar 

  30. Fenton C., Patel A., Dinauer C., Robie D.K., Tuttle R.M., Francis G.L. The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid 2000, 10: 349–357.

    Article  PubMed  CAS  Google Scholar 

  31. Lennard C.M., Patel A., Wilson J., et al. Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer. Surgery 2001, 129: 552–558.

    Article  PubMed  CAS  Google Scholar 

  32. Welch-Dinauer C.A., Tuttle R.M., Robie D.K., et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin. Endocrinol. (Oxf.) 1998, 49: 619–628.

    Article  CAS  Google Scholar 

  33. DeGroot L.J., Kaplan E.L., McCormick M., Straus F.H. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1990, 71: 414–424.

    Article  PubMed  CAS  Google Scholar 

  34. Hay I.D., Bergstralh E.J., Goellner J.R., Ebersold J.R., Grant C.S. 1993 Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 1993, 114: 1050–1057; discussion 1057–1058.

    PubMed  CAS  Google Scholar 

  35. Hedinger C., Williams E.D., Sobin L.H. The WHO histological classification of thyroid tumors: a commentary on the second edition. Cancer 1989, 63: 908–911.

    Article  PubMed  CAS  Google Scholar 

  36. Gupta, S., Patel A., Folstad A., et al. Infiltration of differentiated thyroid carcinoma by proliferating lymphocytes is associated with improved disease-free survival for children and young adults. J. Clin. Endocrinol. Metab. 2001, 86: 1346–1354.

    Article  PubMed  CAS  Google Scholar 

  37. Heba G., Krzeminski T., Porc M., Grzyb J., Dembinska-Kiec A. Relation between expression of TNF alpha, iNOS, VEGF mRNA and development of heart failure after experimental myocardial infarction in rats. J. Physiol. Pharmacol. 2001, 52: 39–52.

    PubMed  CAS  Google Scholar 

  38. Feletou M., Staczek J., Duhault J. Vascular endothelial growth factor and the in vivo increase in plasma extravasation in the hamster cheek pouch. Br. J. Pharmacol. 2001, 132: 1342–1348.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Fukumura D., Gohongi T., Kadambi A., et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. U.S.A. 2001, 98: 2604–2609.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Marrogi A.J., Travis W.D., Welsh J.A., et al. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin. Cancer Res. 2000, 6: 4739–4744.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Francis.

Additional information

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or to reflect the opinions of the Uniformed Services University of the Health Sciences, the Department of the Army, or the Department of Defense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A., Fenton, C., Terrell, R. et al. Nitrotyrosine, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) are increased in thyroid tumors from children and adolescents. J Endocrinol Invest 25, 675–683 (2002). https://doi.org/10.1007/BF03345100

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345100

Key-words

Navigation