Skip to main content
Log in

The relationship of peripheral motor nerve conduction velocity to age-associated loss of grip strength

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Age-associated loss of muscle strength is attributed to decreasing muscle mass. Both strength and mass are dependent on peripheral innervation. However, the association between nerve function and age-associated strength loss has not been studied directly. The median nerve contribution to grip strength was estimated using nerve conduction velocity (NCV). Grip strength and NCV were measured in 197 male participants of the Baltimore Longitudinal Study of Aging (age 59.0±13.9 years). Multiple regression and path analyses were used separately to examine the association between median NCV and grip strength. Grip strength showed a negative quadratic relationship with increasing age (r2=0.32, p<0.001) with a major change in slope occurring after 64.7 years of age. Median NCV (r2=0.14, p<0.001) declined linearly with age. Median NCV significantly contributed to grip strength (p<0.001) while controlling for forearm muscle mass (forearm circumference), self-reported 24-hour caloric expenditures, and age. The median nerve has an independent contribution to age-associated levels of muscle strength. The level of the effect was smaller than what could be attributed to forearm muscle mass or age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen E., Heeboll-Nielsen K.: Isometric muscle strength in relation to age in men and women. Ergonomics 5: 167–169, 1962.

    Article  Google Scholar 

  2. Clement F.J.: Longitudinal and cross-sectional assessments of age changes in physical strength as related to sex, social class, and mental ability. J. Gerontol. 29: 423–429, 1974.

    Article  CAS  PubMed  Google Scholar 

  3. Kallman E.A., Plato C.C., Tobin J.D.: The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J. Gerontol. Med. Sci. 45: M82–M88, 1990.

    CAS  Google Scholar 

  4. Borges O.: Isometric and isokinetic knee extension and flexion torque in men and women aged 20–70. Scand. J. Rehabil. Med. 21: 45–53, 1989.

    CAS  PubMed  Google Scholar 

  5. Vandervoort A.A., McComas A.J.: Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. 61: 361–367, 1986.

    CAS  PubMed  Google Scholar 

  6. Mathiowetz V., Kashman N., Volland G., Weber K., Dowe M., Rogers S.: Grip and pinch strength: normative data for adults. Arch. Phys. Med. Rehabil. 66: 69–74, 1985.

    CAS  PubMed  Google Scholar 

  7. Brown M., Sinacore D.R., Host H.H.: The relationship of strength to function in the older adult. J. Gerontol. 50A (Special Issue): 55–59, 1995.

    Article  Google Scholar 

  8. Bassey E.J., Bendall M.J., Pearson M.: Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin. Sci. 74: 85–89, 1988.

    CAS  PubMed  Google Scholar 

  9. Harris T.: Muscle mass and strength: relation to function in population studies. J. Nutr. 127: 1004S–1006S, 1997.

    CAS  PubMed  Google Scholar 

  10. Pendergast D.R., Fisher N.M., Calkins E.: Cardiovascular, neuromuscular, and metabolic alterations with age leading to frailty. J. Gerontol. 48 (Special Issue): 61–67, 1993.

    Article  PubMed  Google Scholar 

  11. Norris A.H., Shock N.W., Wagman I.H.: Age changes in the maximum conduction velocity of motor fibers of human ulnar nerves. J. Appl. Physiol. 5: 589–593, 1953.

    CAS  PubMed  Google Scholar 

  12. LaFratta C.W., Canestrari R.E.: A comparison of sensory and motor nerve conduction velocities as related to age. Arch. Phys. Med. Rehabil. 47: 286–290, 1966.

    CAS  PubMed  Google Scholar 

  13. Wagman I.H., Lesse H.: Maximum conduction velocities of motor fibers of ulnar nerve in human subjects of various ages and size. J. Neurophysiol. 15: 235–242, 1952.

    CAS  PubMed  Google Scholar 

  14. Mayer R.F.: Nerve conduction studies in man. Neurology 13: 1021–1030, 1963.

    Article  CAS  PubMed  Google Scholar 

  15. Howard J.E., McGill K.C., Dorfman L.J.: Age effects on properties of motor unit action potentials: ADEMG analysis. Ann. Neurol. 24: 207–213, 1988.

    Article  CAS  PubMed  Google Scholar 

  16. Campbell M.J., McComas A.J., Petito F.: Physiological changes in ageing muscles. J. Neurol. Neurosurg. Psychiatry 35: 845–852, 1972.

    Article  Google Scholar 

  17. Henneman E.: Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1346, 1957.

    Article  CAS  PubMed  Google Scholar 

  18. McPhedran A.M., Wuerker R.B., Henneman E.: Properties of motor units in a homogeneous red muscle (soleus) of the cat. J. Neurophysiol. 28: 71–84, 1965.

    CAS  PubMed  Google Scholar 

  19. Tomlinson B.E., Irving D.: The numbers of limb motor neurons in the human lumbrosacral cord throughout life. J. Neurol. Sci. 34: 213–219, 1977.

    Article  CAS  PubMed  Google Scholar 

  20. Doherty T.J., Brown W.F.: The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16: 355–366, 1993.

    Article  CAS  PubMed  Google Scholar 

  21. Doherty T.J., Vandervoort A.A., Taylor A.W., Brown W.F.: Effects of motor unit losses on strength in older men and women. J. Appl. Physiol. 74: 868–874, 1993.

    CAS  PubMed  Google Scholar 

  22. Doherty T.J., Brown W.F.: Age-related changes in the twitch contractile properties of human thenar motor units. J. Appl. Physiol. 82: 93–101, 1997.

    CAS  PubMed  Google Scholar 

  23. Thomas C.K., Johansson R.S., Westing G., Bigland-Ritchie B.: Twitch properties of human thenar motor units measured in response to intraneural motoraxon stimulation. J. Neu-rophysiol. 64: 1339–1346, 1990.

    CAS  Google Scholar 

  24. Kandel E.R., Schwartz J.H.: Principles of neural science, ed. 2. Elsevier, New York, 1985.

    Google Scholar 

  25. Medical Research Council: Aids to the investigation of peripheral nerve injuries. War Memorandum No. 7 (revised ed. 2, 1943). London, Her Majesty’s Stationary Office, 1943.

    Google Scholar 

  26. Shock N.W., Gruelich R.C., Andres R.A., Arenberg D., Costa P.T.Jr., Lakatta E.G., Tobin J.D.: Normal human aging. The Baltimore Longitudinal Study of Aging. Washington, DC, U.S. Government Printing Office, 1984.

    Google Scholar 

  27. Martin A.D., Spenst L.F., Drinkwater D.T., Clarys J.P.: Anthropometric estimation of muscle mass in men. Med. Sci. Sports Exerc. 22: 729–733, 1990.

    Article  CAS  PubMed  Google Scholar 

  28. Heymsfield S.B., McManus C., Smith J., Stevens V., Nixon D.W.: Anthropometric measurement of muscle mass: revised equations for calculation bone-free muscle area. Am. J. Clin. Nutr. 36: 680–690, 1982.

    CAS  PubMed  Google Scholar 

  29. McGandy R.B., Barrows C.H.Jr., Spanias A., Meredith A., Stone J.L., Norris A.H.: Nutrient intakes and energy expenditure in men of different ages. J. Gerontol. 21: 581–587, 1966.

    Article  CAS  PubMed  Google Scholar 

  30. Tabachnick B.G., Fidell L.S.: Using multivariate statistics. Harper & Row, New York, 1983, pp. 107–109.

    Google Scholar 

  31. Loehlin J.C.: Latent Variable Models — an Introduction to Factor, Path, and Structural Analysis. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1987.

    Google Scholar 

  32. Arbuckle J.A.: Amos Users’ Guide Version 3.6. SmallWaters, Chicago, 1996.

    Google Scholar 

  33. DeJesus P.V.Jr., Hausmanowa-Petrusewicz I., Barchi R.L.: The effect of cold on nerve conduction of human slow and fast nerve fibers. Neurology 23: 1182–1189, 1973.

    Article  CAS  Google Scholar 

  34. Denys E.H.: AAEM minimonograph #14: the influence of temperature in clinical neurophysiology. Muscle Nerve 14: 795–811, 1991.

    Article  CAS  PubMed  Google Scholar 

  35. Nielsen V.K.: Sensory and motor nerve conduction in the median nerve in normal subjects. Acta Med. Scand. 194: 435–443, 1973.

    Article  CAS  PubMed  Google Scholar 

  36. Corpas E., Harman S.M., Blackman M.R.: Human growth hormone and human aging. Endocr. Rev. 14: 20–39, 1993.

    CAS  PubMed  Google Scholar 

  37. Fiatarone M.A., Marks E.C., Ryan N.D., Meredith C.N., Lipsitz L.A., Evans W.J.: High-intensity strength training in nonagenarians: effects on skeletal muscle. JAMA 263: 3029–3034, 1990.

    Article  CAS  PubMed  Google Scholar 

  38. Heymsfield S.B., McManus C., Smith J.: Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am. J. Clin. Nutr. 36: 680–690, 1982.

    CAS  PubMed  Google Scholar 

  39. Taylor P.K.: Non-linear effects of age on nerve conduction in adults. J. Neurol. Sci. 66: 223–234, 1984.

    Article  CAS  PubMed  Google Scholar 

  40. Dorfman L.J., Bosley T.M.: Age-related changes in peripheral and central nerve conduction in man. Neurology 29: 38–44, 1979.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metter, E.J., Conwit, R., Metter, B. et al. The relationship of peripheral motor nerve conduction velocity to age-associated loss of grip strength. Aging Clin Exp Res 10, 471–478 (1998). https://doi.org/10.1007/BF03340161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03340161

Key words

Navigation