Skip to main content
Log in

Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

A series of experiments were performed for toluene decomposition from a gaseous influent at normal temperature and atmospheric pressure by nonthermal plasma coupled with a combination of catalysts technology. Nonthermal plasma was generated by dielectric barrier discharge. γ-Al2O3 was used to be a sorbent and a catalyst carrier. Nanocatalysts were MnO2/γ-Al2O3 coupled with modified ferroelectric of nano-Ba0.8Sr0.2Zr0.1Ti0.9O3. γ-Al2O3 played an important role in prolonging reaction time of nonthermal plasma with volatile organic compounds molecules. MnO2/γ-Al2O3 has an advantage for ozone removal, while nano-Ba0.8Sr0.2Zr0.1Ti0.9O3 is a kind of good ferroelectric material for improving energy efficiency. Thus these packed materials were incorporated together to strengthen nonthermal plasma power for volatile organic compounds decomposition. The results showed the synergistic technology resulted in greater enhancement of toluene removal and energy efficiencies and a better inhibition for ozone formation in the gas exhaust. Based on the data analysis of the Fourier transforms infrared spectrum, the reaction process of toluene decomposition and the mechanism of synergistic effect are discussed. The results showed in a complex oxidation mechanism of toluene via several pathways, producing either ringretaining or ringopening products. The final products were carbon dioxide and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babel, S., Opiso, E.M., (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int. J. Environ. Sci. Tech., 4(1), 99–107 (9 pages).

    Article  CAS  Google Scholar 

  • Chang, M. B.; Balbach, J. H.; Rood, M. J.; Kushner, M. J., (1991). Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis. J. Appl. Phys., 69(8), 4409–4418 (10 pages).

    Article  CAS  Google Scholar 

  • Chang, M. B.; Tseng, T. D., (1996). Gas-phase removal of H2S and NH3 with dielectric barrier discharges. J. Environ. Eng., 122(1), 41–46 (6 pages).

    Article  Google Scholar 

  • Delagrange, S.; Pinard, L.; Tatibouet, J. M., (2006). Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Appl. Catal. B: Environ., 68(3–4), 92–98 (7 pages).

    Article  CAS  Google Scholar 

  • Futamura, S.; Zhang, A. H.; Yamamoto, T., (1997). The dependence of nonthermal plasma behavior of VOCs on their chemical structures. J. Electrostat., 42(1–2), 51–62 (12 pages).

    Article  CAS  Google Scholar 

  • Futamura, S.; Einaga, H.; Kabashima, H., (2004). Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catal., Today, 89(1–2), 89–95 (7 pages).

    Article  CAS  Google Scholar 

  • Gal, A.; Ogata, A.; Futamura, S., (2003). Mechanism of the dissociation of chlorofluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure. J. Phys. Chem. A., 107(42), 8859–8866 (8 pages).

    Article  CAS  Google Scholar 

  • Guo, Y. F.; Ye, D. Q.; Chen, K. F., (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J. Molecular. Cata. A: Chem., 245(1–2), 93–100 (8 pages).

    Article  CAS  Google Scholar 

  • Juang, D. F.; Lee, C. H., Hsueh, S. C., (2009a). Chlorinated volatile organic compounds found near the water surface of heavily polluted rivers. Int. J. Environ. Sci. Tech., 6(4), 545–556 (12 pages).

    CAS  Google Scholar 

  • Juang, D. F.; Yuan, C. S.; Hsueh, S. C.; Chiou, L. J., (2009b). Distribution of volatile organic compounds around a polluted river. Int. J. Environ. Sci. Tech., 6(1), 91–104 (14 pages).

    CAS  Google Scholar 

  • Kim, H. H., (2006). Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE. Trans. Plasma. Sci., 34(3), 984–995 (12 pages).

    Article  CAS  Google Scholar 

  • Kim, H. H.; Ogata, A.; Futamura, S., (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl. Catal. B: Environ., 79(4), 356–367 (12 pages).

    Article  CAS  Google Scholar 

  • Kohno, H.; Berezin, A. A.; Chang, J. S., (1998). Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE. Trans. Ind. Appl., 34(5), 953–966 (14 pages).

    Article  CAS  Google Scholar 

  • Lee, K.; Lee, E.; Lee, H.; Kim, Y. K.; Sohn, K., (2011). Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ. Sci. Tech., 8(2), 381–388 (8 pages).

    CAS  Google Scholar 

  • Magureanu, M.; Mandache, N. B.; Hu, J. C.; Richards, R.; Florea, M.; Parvulescu, V. I., (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Appli. Cata. B: Environ., 61(1–2), 12–20 (9 pages).

    Article  CAS  Google Scholar 

  • Magureanu, M.; Mandache, N. B.; Parvulescu, V. I.; Subrahmanyam, C.; Renken, A.; Kiwi Minsker, L., (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B: Environ., 74(3–4), 270–277 (8 pages).

    Article  CAS  Google Scholar 

  • Malik, M. A.; Minamitani, Y.; Schoenbach, K. H., (2005). Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE. Trans. Plasma. Sci., 33(1), 50–56 (7 pages).

    Article  CAS  Google Scholar 

  • Masuda, S., (1988). Pulse corona induced plasma chemical process: a horizon of new plasma chemical technologies. Pure. Appl. Chem., 60(5), 727–731 (5 pages).

    Article  CAS  Google Scholar 

  • Mizuno, A.; Clements, J. S.; Davis. R. H., (1986). A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE. Trans. Ind. Appl., 22(3), 516–522 (7 pages).

    Article  Google Scholar 

  • Muhamad. A. M.; Jiang. X. Z., (2000). Catalyst assisted destruction of trichloro ethylene and toluene in corona discharges. J. Environ. Sci., 12(1), 7–11 (5 pages).

    Google Scholar 

  • Naydenov, A.; Mehandjiev. D., (1993). Complete oxidation of benzene on manganese dioxide by ozone. App1.Cata1. A: Gen., 97(1), 17–22 (6 pages).

    Article  CAS  Google Scholar 

  • Nunez, C. M.; Ramsey. G. H.; Ponder, W. H.; Abbott, J. H.; Hamel, L. E.; Kariher, P. H., (1993 ). Corona destruction: An innovative control technology for VOCs and air toxics. Air. Waste., 43(2), 242–247 (6 pages).

    Article  CAS  Google Scholar 

  • Ogata, A.; Einaga, H.; Kabashima, H., (2003). Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Appl. Catal. B: Environ., 46(1), 87–95 (9 pages).

    Article  CAS  Google Scholar 

  • Ogata, A.; Yamanonchi, K.; Mizuno, K., (1999). Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors. IEEE. Trans. Ind. Appl., 35(6), 1289–1295 (7 pages).

    Article  CAS  Google Scholar 

  • Park, J. Y.; Jung, J. G.; Kim, J. S., (2003). Effect of nonthermal plasma reactor for CF decomposition. IEEE. Trans. Plasma. Sci., 31(6), 1349–1354 (6 pages).

    Article  CAS  Google Scholar 

  • Perry, R. A.; Atkinson, R.; Pitts, J. N., (1977). Kinetics and mechanism of the gas phase reaction of hydroxyl radicals with aromatic hydrocarbons over the temperature range 296–473 K. J. Phys. Chem., 81(4), 296–304 (9 pages).

    Article  CAS  Google Scholar 

  • Radhakrishnan, R.; Oyama, S. T.; Chen, J. G., (2001). Electron transfer effects in ozone decomposition on supported manganese oxide. J. Phys. Chem. B., 105(19), 4245–4253 (9 pages).

    Article  CAS  Google Scholar 

  • Refaat, A. A. (2009). Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci.Tech., 6(4), 677–694 (8 pages).

    CAS  Google Scholar 

  • Refaat, A. A., (2011). Biodiesel production using solid metal oxide catalysts. Int. J. Environ. Sci. Tech., 8(1), 203–221 (19 pages).

    CAS  Google Scholar 

  • Shi, A. H., Yan, W. B., Li, Y. J.; Huang, K. L., (2008). Preparation and characterization of nanometer-sized barium titanate powder by complex-precursor method. J.Centr. South Univ. Tech., 15(3), 224–228 (5 pages).

    Google Scholar 

  • Subrahmanyam, C.; Renken, A.; Kiwi-Minsker, L., (2007). Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem. Eng. J., 134(1–3), 78–83 (6 pages).

    Article  CAS  Google Scholar 

  • Tonkyn, R. G.; Barlow, S. E.; Orlando, T. M., (1996). Destruction of carbon tetrachloride in a dielectric barrier/ packed-bed corona reactor. J. Appl. Phys., 80(9), 4877–4886 (10 pages).

    Article  CAS  Google Scholar 

  • Tonkyn, R. G.; Barlow, S. E.; Hoard, J., (2003). Reduction of NOx in synthetic diesel exhaust via two-step plasmacatalytic treatment. Appl. Catal. B. Environ., 40(3), 207–217 (11 pages).

    Article  CAS  Google Scholar 

  • Urashima, K.; Chang, J., (2000). Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE. Trans. Dielectr. Electr. Insul., 7(5), 602–614 (13 pages).

    Article  CAS  Google Scholar 

  • Van Durmea, J.; Dewulfa, J.; Sysmansa, W.; Leysb, C.; Van Langenhove, H., (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl. Cata. B: Environ., 74(1–2), 161–166 (6 pages).

    Article  Google Scholar 

  • Yamamoto, T.; Ramanatiran, K.; Lawless, P. A.; Ensor, D. S.; Nwesome, J. R.; Plaks, N.; Ramsey, G. H., (1992). Control of Volatile organic compound by ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans. Ind. Appl., 28(3), 528–533 (6 pages).

    Article  CAS  Google Scholar 

  • Yamamoto, T.; Mizuno, K.; Tamori, I.; Ogata, A.; Nifuku, M.; Michalska, M.; Prieto, G., (1996). Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE. Trans. Ind. Appl., 32(1), 100–106 (7 pages).

    Article  CAS  Google Scholar 

  • Young, S. M.; Dors, M.; Jerzy, M., (2004). Effect of reaction temperature on NOx removal and formation of ammonium nitrate in nonthermal plasma process combined with selective catalytic reduction. IEEE. Trans. Plasma. Sci., 32(1), 799–807 (9 pages).

    Google Scholar 

  • Zhu, T.; Li, J.; Jin, Y. Q.; Liang, Y. H.; Ma, G. D., (2009a). Gaseous phase benzene decomposition by nonthermal plasma coupled with nano-titania catalyst. Int. J. Environ. Sci. Tech., 6(1), 141–152 (12 pages).

    CAS  Google Scholar 

  • Zhu, T.; Li, J.; Liang, W. J.; Jin, Y. Q., (2009b). Synergistic effect of catalyst for oxidation removal of toluene. J. Hazard. Mater., 165, 1258–1261 (4 pages).

    Article  CAS  Google Scholar 

  • Zhu, T.; Wan, Y. D.; He, X. W.; Xu, D. Y.; Shu, X. Q., (2011). Effect of modified ferroelectric on nonthermal plasma process for toluene decomposition. Fresen. Environ. Bull., 20(1), 149–155 (7 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zhu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T., Wan, Y.D., Li, J. et al. Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts. Int. J. Environ. Sci. Technol. 8, 621–630 (2011). https://doi.org/10.1007/BF03326247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326247

Keywords

Navigation