Skip to main content
Log in

Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study investigated the prediction of suspended sediment load in a gauging station in the USA by neuro-fuzzy, conjunction of wavelet analysis and neuro-fuzzy as well as conventional sediment rating curve models. In the proposed wavelet analysis and neuro-fuzzy model, observed time series of river discharge and suspended sediment load were decomposed at different scales by wavelet analysis. Then, total effective time series of discharge and suspended sediment load were imposed as inputs to the neuro-fuzzy model for prediction of suspended sediment load in one day ahead. Results showed that the wavelet analysis and neuro-fuzzy model performance was better in prediction rather than the neuro-fuzzy and sediment rating curve models. The wavelet analysis and neuro-fuzzy model produced reasonable predictions for the extreme values. Furthermore, the cumulative suspended sediment load estimated by this technique was closer to the actual data than the others one. Also, the model could be employed to simulate hysteresis phenomenon, while sediment rating curve method is incapable in this event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison, P. S.; Murrary, K. B.; Watson, J. N., (2001). Wavelet transform analysis of open channel wake flows. J. Eng. Mechanic, 127 (1), 58–70 (13 pages).

    Article  Google Scholar 

  • Altun, H.; Bilgil, A.; Fidan, B. C, (2007). Treatment of multidimensional data to enhance neural network estimators in regression problems. Expert Sys. Appl., 32 (2), 599–605 (13 pages).

    Article  Google Scholar 

  • Asselmanl, N. E. M., (2000). Fitting and interpretation of sediment rating curves. J. Hydro., 234, 228–248 (13 pages).

    Article  Google Scholar 

  • Aqil, M.; Kita, I.; Yano, A; Nishiyama, S., (2007). Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modelling tool. J. Environ. Manage., 85 (1), 215–223 (13 pages).

    Article  Google Scholar 

  • Bandyopadhyay, G.; Chattopadhyay, S., (2007). Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int. J. Environ. Sci. Tech., 4 (1), 141–149 (9 pages).

    Article  CAS  Google Scholar 

  • Brown, M.; Harris, C., (1994). Neuro-fuzzy adaptive modelling and control. Prentice-Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Chang, I. P.; Lin, G. Y., (2007). Fuzzy logic design of the SI engine air-fuel ratio controller., Proceedings of 2007 CACS International Automatic Control Conference. National Chung Hsing University, Taichung, Taiwan.

    Google Scholar 

  • Chuang, C. C; Jeng, J. T.; Tao, C. W., (2009). Hybrid robust approach for TSK fuzzy modeling with outliers. Expert Sys. Appl., 36 (5), 8925–8931 (13 pages).

    Article  Google Scholar 

  • Cigizoglu, H. K., (2004). Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv. Water Resour., 27 (2), 185–195 (13 pages).

    Article  Google Scholar 

  • Daubechies, I., (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE T. Inform. Theory, 36 (5), 961–1005 (45 pages).

    Article  Google Scholar 

  • Daubechies I., (1992). Ten lectures on wavelets. CSBM-NSF Series Appl. Math., No. 61. SIAM Publi.; 357.

  • Firat, M.; Güngör, M., (2008). Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydro. Proc, 22 (13), 2122–2132 (13 pages).

    Article  Google Scholar 

  • Foufoula-Georgiou, E.; Kumar, P., (1995). Wavelet in Geophysics, Academic Press, New York, 337.

    Google Scholar 

  • Hadji Hosseinlou, M.; Sohrabi, M., (2009). Predicting and identifying traffic hot spots applying neuro-fuzzy systems in intercity roads. Int. J. Environ. Sci. Tech., 6 (2), 309–314 (13 pages).

    Google Scholar 

  • Hidalgo, D.; Castillo, O.; Melin, P., (2009). Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inform. Sci., 179 (13), 2123–2145 (13 pages).

    Article  Google Scholar 

  • Jang, J. S. R., (1993). ANFIS: Adaptive network based fuzzy inference system. IEEE T. Syst.Man. Cybernetion, 23 (3), 665–683 (13 pages).

    Article  Google Scholar 

  • Jang, J. S. R.; Sun, C. T., (1995). Neuro-fuzzy modelling and control, in: Proceedings IEEE, 83, 378–406 (13 pages).

    Google Scholar 

  • Jang, J. S. R;, Mizutani, C. T. S. E, (1996). Neuro-fuzzy and soft computing. Pearson plc, 614.

  • Jaradat, M. A. K.; Al-Nimr, M. A.; Alhamad, M. N., (2008). Smoke modified environment for crop frost protection: A fuzzy logic approach. Comput. Electron. Agr., 64 (2), 104–110 (13 pages).

    Article  Google Scholar 

  • Kim, T. W.; Valdes, J. B., (2003). Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydro. Eng., 8 (6), 319–328 (13 pages).

    Article  Google Scholar 

  • Kisi, O.; Haktanir, T.; Ardiclioglu, M.; Ozturk, O.; Yalcin, E.; Uludag, S., (2008). Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Adv. Eng. Softw., 40 (6), 438–444 (13 pages).

    Article  Google Scholar 

  • Labat, D.; Ababou, R.; Mangin, A., (2000). Rainfall-runoff relation for karstic spring. Part 2: Continuous wavelet and discrete orthogonal multi resolution analyses. J. Hydro., 238 (3–4), 149–178 (13 pages).

    Google Scholar 

  • Labat, D., (2005). Recent advances in wavelet analyses: Part 1: A review of concepts. J. Hydro., 314 (1-4), 275–288 (13 pages).

    Article  Google Scholar 

  • Legates, D. R.; McCabe, Jr., (1999). Evaluating the use of goodness-of-fit measures in hydrologie and hydroclimatic model validation. Water Resour. Res., 35 (1), 233–241 (13 pages).

    Article  Google Scholar 

  • Lohani, A. K.; Goel, N. K.; Bhatia, K. K., (2007). Deriving stage-discharge-sediment concentration relationships using fuzzy logic. Hydro. Sci. J., 52 (4), 793–807 (13 pages).

    Article  Google Scholar 

  • Lopez, J.; Cembrano, G; Cellier, F. E., (1996). Time series prediction using fuzzy inductive reasoning: A case study, Proc. ESM’96, European Simulation Multi Conference, Budapest, Hungary, 765–770 (13 pages).

    Google Scholar 

  • Mallat, S. G, (1989). A theory for multi resolution signal decomposition: The wavelet representation. IEEE T. Pattern Anal., 11 (7), 674–693 (13 pages).

    Article  Google Scholar 

  • Mallat, S. G, (1998). A wavelet tour of signal processing, Academic, San Diego, 557.

    Google Scholar 

  • Masters, T., (1993). Practical neural network recipes in C++. San Diego (CA): Academic Press.

    Google Scholar 

  • Mirbagheri, S. A; Tanji, K. K.; Krone, R. B., (1988a). Sediment characterization and transport in Colusa Basin Drain. J. Environ. Eng., 114 (6), 1257–1273 (13 pages).

    Article  CAS  Google Scholar 

  • Mirbagheri, S. A.; Tanji, K. K.; Krone, R. B., (1988b). Simulation of suspended sediment in colusa basin drain. J. Environ. Eng., 114 (6), 1274–1293 (13 pages).

    Google Scholar 

  • Morgan, R. P. C, (1995). Soil erosion and conservation, 2nd. Ed., Longman, London.

    Google Scholar 

  • Morris, G. L.; Fan, J., (1997). Reservoir sedimentation handbook. McGraw-Hill, New York.

    Google Scholar 

  • Nash, J. E.; Sutcliffe, J. V, (1970). River flow forecasting through conceptual models part I- a discussion of principles. J. Hydro., 10 (3), 282–290 (13 pages).

    Article  Google Scholar 

  • Nasiri, F.; Maqsood, I.; Huang, G; Fuller, N., (2007). Water quality index: A fuzzy river-pollution decision support expert system. J. Water Resour. Plan. Manage., 133 (2), 95–105 (13 pages).

    Article  Google Scholar 

  • Nayak, P. C; Sudheer, K. P.; Rangan, D. M.; Ramasastri, K. S., (2004). A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydro., 291 (1–2), 52–66 (13 pages).

    Article  Google Scholar 

  • Nguyen, T. J.; Kok, J. L.; Titus, M. J., (2007). Anew approach to testing an integrated water systems model using qualitative scenarios. Environ. Model. Softw., 22 (11), 1557–1571 (14 pages).

    Article  Google Scholar 

  • Nourani, V.; Mogaddam, A. A; Nadiri, A. O., (2008a). An ANN-based model for spatiotempral groundwater level forecasting. Hydrol. Process, 22 (26), 5054–5066 (13 pages).

    Article  Google Scholar 

  • Nourani, V.; Alami, M. T.; Aminfar, M. H., (2008b). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intel., 22 (3), 466–472 (7 pages).

    Article  Google Scholar 

  • Nourani, V.; Singh, V. P.; Delafrouz, H., (2009). Three geomorphological rainfall-runoff models based on the linear reservoir concept. Catena, 76 (3), 206–214 (9 pages).

    Article  Google Scholar 

  • Ocampo-Duque, W.; Schuhmacher, M.; Domingo, J. L., (2007). A neural-fuzzy approach to classify the ecological status in surface waters. Environ. Pollut, 148 (2), 634–641 (8 pages).

    Article  CAS  Google Scholar 

  • Osowski, S.; Garanty, K., (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intel., 20 (6), 745–755 (11 pages).

    Article  Google Scholar 

  • Partal, T.; Kisi, O., (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydro., 342 (1–2), 199–212 (14 pages).

    Article  Google Scholar 

  • Pasquini, A.; Depetris, P., (2007). Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J. Hydro., 333 (2–4), 385–399 (15 pages).

    Article  Google Scholar 

  • Rajaee, T.; Mirbagheri, S. A., (2009). Suspended sediment modelling in rivers using ANNs. Accepted in “J. Fac. Eng., Ferdowsi University of Mashhad, Iran”.

  • Rajaee, T.; Mirbagheri, S. A.; Zounemat-Kermani, M.; Nourani, V., (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ., 407 (17), 4916–4927 (12 pages).

    Article  CAS  Google Scholar 

  • Rene, E. R.; Kim, J. H.; Park, H. S., (2008). An intelligent neural network model for evaluating performance of immobilized cell biofilter treating hydrogen sulphide vapors. Int. J. Environ. Sci. Tech., 5 (3), 287–296 (10 pages).

    Article  CAS  Google Scholar 

  • Sarma, J. N., (1986). Sediment transport in the Burhi Dihing River, India. In: Hadley, R. F. (Ed.). Drainage basin sediment delivery, IAHS publication, 159, 199–215.

    Google Scholar 

  • Szilagyi, J.; Katul, G. G.; Parlange, M. B.; Albertson, J. D.; Cahill, A. T., (1996). The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer. Bound. Lay. Meteorol., 79 (1–2), 35–50 (16 pages).

    Article  Google Scholar 

  • Tawfik, M.; Ibramhim, I.; Fahmy, H., (1997). Hysteresis sensitive neural network for modeling rating curves. J. Comput. Civil Eng., 11 (3), 206–211 (6 pages).

    Article  Google Scholar 

  • Tayfur, G; Ozdemir, S.; Singh, V. P., (2003). Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv. Water Resour., 26 (12), 1249–1256 (8 pages).

    Article  Google Scholar 

  • Tuzkaya, G; Gülsün, B., (2008). Evaluating centralized return centers in a reverse logistics network: An integrated fuzzy multi-criteria decision approach. Int. J. Environ. Sci. Tech., 5 (3), 339–352 (14 pages).

    Article  Google Scholar 

  • Tuzkaya, G; Ozgen, A.; Ozgen, D.; Tuzkaya, U. R., (2009). Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach. Int. J. Environ. Sci. Tech., 6 (3), 477–490 (14 pages).

    Google Scholar 

  • Verstraeten, G; Poesen, J., (2001). Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology, 40 (1–2), 123–144 (22 pages).

    Article  Google Scholar 

  • Wang, L. X., (1994). Adaptive fuzzy systems and control. design and stability analysis. PTR Prentice Hall.

  • Wang, W.; Ding, J., (2003). Wavelet network model and its application to the prediction of hydrology. Nat. Sci., 1 (1), 67–71 (5 pages).

    Google Scholar 

  • Wei, A. L.; Zeng, G M.; Huang, G H.; Liang, J.; Li, X. D., (2009). Modeling of a permeate flux of cross-flow membrane filtration of colloidal suspensions: A wavelet network approach. Int. J. Environ. Sci. Tech., 6 (3), 395–406 (12 pages).

    CAS  Google Scholar 

  • Yuan, F.; Miyamoto, S.; Anand, S., (2007). Changes in major element hydrochemistry of the Pecos River in the American Southwest since 1935. Appl. Geochem., 22 (8), 1798–1813 (16 pages).

    Article  CAS  Google Scholar 

  • Zounemat-Kermani, M.; Teshnehlab, M., (2008). Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Softw. Comput., 8 (2), 928–936 (9 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mirbagheri Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaee, T., Mirbagheri, S.A., Nourani, V. et al. Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model. Int. J. Environ. Sci. Technol. 7, 93–110 (2010). https://doi.org/10.1007/BF03326121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326121

Keywords

Navigation