Skip to main content
Log in

Diagnosis, Pathogenesis, and Treatment Prospects in Cystic Kidney Disease

  • Genitourinary Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Cystic kidney diseases (CKDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive fibrocystic renal and hepatobiliary changes. Recent findings have proven the cystogenic process to be compatible with cellular dedifferentiation, i. e. increased apoptosis and proliferation rates, altered protein sorting and secretory characteristics, as well as disorganization of the extracellular matrix. Compelling evidence suggests that cilia play a central pathogenic role and most cystic kidney disorders converge into a common pathogenic pathway. Recently, several promising trials have further extended our understanding of the pathophysiology of CKD and may have the potential for rational personalized therapies in future years. This review aims to summarize the current state of knowledge of the structure and function of proteins underlying polycystic kidney disease, to explore the clinical consequences of changes in respective genes, and to discuss potential therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Ong AC, Harris PC. Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 2005; 67: 1234–47

    Article  PubMed  CAS  Google Scholar 

  2. Wilson PD. Polycystic kidney disease. N Engl J Med 2004; 350: 151–64

    Article  PubMed  CAS  Google Scholar 

  3. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 2002; 13: 2384–98

    Article  PubMed  CAS  Google Scholar 

  4. Pei Y, Paterson AD, Wang KR, et al. Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 2001; 68: 355–63

    Article  PubMed  CAS  Google Scholar 

  5. The International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 1995; 81: 289–98

    Google Scholar 

  6. Hughes J, Ward CJ, Peral B, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995; 10: 151–60

    Article  PubMed  CAS  Google Scholar 

  7. Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996; 272: 1339–42

    Article  PubMed  CAS  Google Scholar 

  8. Hateboer N, Bijk MA, Bogdanova N, et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2: European PKD1-PKD2 Study Group. Lancet 1999; 353: 103–7

    Article  PubMed  CAS  Google Scholar 

  9. Magistroni R, He N, Wang K, et al. Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2003; 14: 1164–74

    Article  PubMed  Google Scholar 

  10. Gibbs GF, Huston J, Qian Q, et al. Follow-up of intracranial aneurysms in autosomal-dominant polycystic kidney disease. Kidney Int 2004; 65: 1621–7

    Article  PubMed  Google Scholar 

  11. Paterson AD, Magistroni R, He N, et al. Progressive loss of renal function is an age-dependent heritable trait in type 1 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2005; 16: 755–62

    Article  PubMed  Google Scholar 

  12. Persu A, Duyme M, Pirson Y, et al. Comparison between siblings and twins supports a role for modifier genes in ADPKD. Kidney Int 2004; 66: 2132–6

    Article  PubMed  CAS  Google Scholar 

  13. Rossetti S, Strmecki L, Gamble V, et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 2001; 68: 46–63

    Article  PubMed  CAS  Google Scholar 

  14. Rossetti S, Chauveau D, Walker D, et al. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int 2002; 61: 1588–99

    Article  PubMed  CAS  Google Scholar 

  15. Hateboer N, Veldhuisen B, Peters D, et al. Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 2000; 57: 1444–51

    Article  PubMed  CAS  Google Scholar 

  16. Rossetti S, Burton S, Strmecki L, et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 2002; 13: 1230–7

    Article  PubMed  CAS  Google Scholar 

  17. Rossetti S, Chauveau D, Kubly V, et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 2003; 361: 2196–201

    Article  PubMed  CAS  Google Scholar 

  18. Pirson Y, Chauveau D, Torres V. Management of cerebral aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2002; 13: 269–76

    PubMed  Google Scholar 

  19. Lu W, Peissel B, Babakhanlou H, et al. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd mutation. Nat Genet 1997; 17: 179–81

    Article  PubMed  CAS  Google Scholar 

  20. Wu G, D’Agati V, Cai Y, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 1998; 93: 177–88

    Article  PubMed  CAS  Google Scholar 

  21. Pritchard L, Sloane-Stanley JA, Sharpe JA, et al. A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype.Hum Mol Genet 2000; 9: 2617–27

    Article  PubMed  CAS  Google Scholar 

  22. Boulter C, Mulroy S, Webb S, et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 2001; 98: 12174–9

    Article  PubMed  CAS  Google Scholar 

  23. Lu W, Shen X, Pavlova A, et al. Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 2001; 10: 2385–96

    Article  PubMed  CAS  Google Scholar 

  24. Wu G, Tian X, Nishimura S, et al. Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 2002; 11: 1845–54

    Article  PubMed  CAS  Google Scholar 

  25. Kim K, Drummond I, Ibraghimov-Beskrovnaya O, et al. Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci U S A 2000; 97: 1731–6

    Article  PubMed  CAS  Google Scholar 

  26. Piontek KB, Huso DL, Grinberg A, et al. A functional floxed allele of Pkd1 that can be conditionally inactivated in vivo. J Am Soc Nephrol 2004; 15: 3035–43

    Article  PubMed  Google Scholar 

  27. Lantinga-van Leeuwen IS, Dauwerse JG, Balde HJ, et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 2004; 13: 3069–77

    Article  PubMed  CAS  Google Scholar 

  28. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 2005; 6: 928–40

    Article  PubMed  CAS  Google Scholar 

  29. Köttgen M, Benzing T, Simmen T, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 2005; 24: 705–16

    Article  PubMed  CAS  Google Scholar 

  30. Gallagher AR, Cedzich A, Gretz N, et al. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actincytoskeleton. Proc Natl Acad Sci U S A 2000; 97: 4017–22

    Article  PubMed  CAS  Google Scholar 

  31. Li Q, Montalbetti N, Shen PY, et al. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 2005; 14: 1587–603

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Wright JM, Qian F, et al. Polycystin 2 interacts with type-I IP3 receptor to modulate intracellular Ca2+ signaling. J Biol Chem 2005 Dec 16; 280(50): 41298–306

    Article  PubMed  CAS  Google Scholar 

  33. Wang S, Zhang J, Nauli S, et al. Fibrocystin is associated with polycystin-2 and regulates intracellular calcium. J Am Soc Nephrol 2004; 15: ASN Renal Week abstracts issue

  34. Nagano J, Kitamura K, Hujer KM, et al. Fibrocystin interacts with CAML, a protein involved in Ca(2+) signaling. Biochem Biophys Res Commun 2005 Dec 16; 338(2): 880–9

    Article  PubMed  CAS  Google Scholar 

  35. Qian F, Wei W, Germino GG, et al. The nanomechanics of polycystin-1 extracellular region. J Biol Chem 2005 Dec 9; 280(49): 40723–30

    Article  PubMed  CAS  Google Scholar 

  36. Qian F, Boletta A, Bhunia AK, et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A 2002; 99: 16981–6

    Article  PubMed  CAS  Google Scholar 

  37. Qian F, Germino FJ, Cai Y, et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 1997; 16: 179–83

    Article  PubMed  CAS  Google Scholar 

  38. Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 2000; 408: 990–4

    Article  PubMed  CAS  Google Scholar 

  39. Hildebrandt F, Otto E, Rensing C, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet 1997; 17: 149–53

    Article  PubMed  CAS  Google Scholar 

  40. Mochizuki T, Saijoh Y, Tsuchiya K, et al. Cloning of inv, a gene that controls left/ right asymmetry and kidney development. Nature 1998; 395: 177–81

    Article  PubMed  CAS  Google Scholar 

  41. Morgan D, Turnpenny L, Goodship J, et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 1998; 20: 149–56

    Article  PubMed  CAS  Google Scholar 

  42. Otto EA, Schermer B, Obara T, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 2003; 34: 413–20

    Article  PubMed  CAS  Google Scholar 

  43. Olbrich H, Fliegauf M, Hoefele J, et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 2003; 34: 455–9

    Article  PubMed  CAS  Google Scholar 

  44. Mollet G, Salomon R, Gribouval O, et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet 2002; 32: 300–5

    Article  PubMed  CAS  Google Scholar 

  45. Otto E, Hoefele J, Ruf R, et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 2002; 71: 1167–71

    Article  Google Scholar 

  46. Mollet G, Silbermann F, Delous M, et al. Characterization of the nephrocystin/ nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet 2005; 14: 645–56

    Article  PubMed  CAS  Google Scholar 

  47. Otto E, Loeys B, Khanna H, et al. A novel ciliary IQ domain protein, NPHP5, is mutated in Senior-Loken syndrome (nephronophthisis with retinitis pigmentosa), and interacts with RPGR and calmodulin. Nat Genet 2005; 37: 282–8

    Article  PubMed  CAS  Google Scholar 

  48. Nishimura DY, Searby CC, Carmi R, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001; 10: 865–74

    Article  PubMed  CAS  Google Scholar 

  49. Badano JL, Ansley SJ, Leitch CC, et al. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet 2003; 72: 650–8

    Article  PubMed  CAS  Google Scholar 

  50. Ferrante MI, Giorgio G, Feather SA, et al. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 2001; 68: 569–76

    Article  PubMed  CAS  Google Scholar 

  51. Romio L, Fry AM, Winyard PJ, et al. OFD1 is a centrosomal/basal body protein expressed during mesenchymal epithelial transition in human nephrogenesis. J Am Soc Nephrol 2004; 15: 2556–68

    Article  PubMed  CAS  Google Scholar 

  52. Guay-Woodford LM. Autosomal recessive polycystic kidney disease: clinical and genetic profiles. In: Watson ML, Torres VE, editors. Polycystic kidney disease. Oxford: Oxford University Press, 1996: 237–66

    Google Scholar 

  53. Zerres K, Rudnik-Schöneborn S, Senderek J, et al. Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 2003; 16: 453–8

    PubMed  CAS  Google Scholar 

  54. Bergmann C, Senderek J, Windelen E, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal recessive polycystic kidney disease (ARPKD). Kidney Int 2005; 67: 829–48

    Article  PubMed  CAS  Google Scholar 

  55. Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 2003; 111: 1072–80

    Article  PubMed  Google Scholar 

  56. Rossetti S, Torra R, Coto E, et al. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int 2003; 64: 391–403

    Article  PubMed  CAS  Google Scholar 

  57. Moser M, Matthiesen S, Kirfel J, et al. A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD). Hepatology 2005; 41: 1113–21

    Article  PubMed  CAS  Google Scholar 

  58. Tao B, Garcia-Gonzales M, Onuchic LF, et al. Evidence that PKHD1 has a complex transcriptional profile in a new spontaneous mouse model of ARPKD [abstract] J Am Soc Nephrol 2005; 16, ASN Renal Week abstracts issue: 135A

  59. Ward CJ, Hogan MC, Rossetti S, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002; 30: 259–69

    Article  PubMed  Google Scholar 

  60. Onuchic LF, Furu L, Nagasawa Y, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 2002; 70: 1305–17

    Article  PubMed  CAS  Google Scholar 

  61. Ward CJ, Yuan D, Masyuk TV, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 2003; 12: 2703–10

    Article  PubMed  CAS  Google Scholar 

  62. Masyuk TV, Huang BQ, Ward CJ, et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003; 125: 1303–10

    Article  PubMed  CAS  Google Scholar 

  63. Zhang MZ, Mai W, Li C, et al. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci U S A 2004; 101: 2311–6

    Article  PubMed  CAS  Google Scholar 

  64. Wang S, Luo Y, Wilson PD, et al. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 2004; 15: 592–602

    Article  PubMed  Google Scholar 

  65. Menezes LF, Cai Y, Nagasawa Y, et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int 2004; 66: 1345–55

    Article  PubMed  CAS  Google Scholar 

  66. Masyuk TV, Muff MA, Huang BQ, et al. Functional implications of topographical distribution of fibrocystin in cholangiocytes [abstract]. J Am Soc Nephrol 2005; 16, ASN Renal Week abstracts issue: 40A

  67. Kaimori JY, Nagasawa Y, Garcia-Gonzales MA et al. The PKHD1 product, polyductin/fibrocystin, undergoes notch-like posttranslational processing [abstract]. J Am Soc Nephrol 2005; 16, ASN Renal Week abstracts issue: 24A-25A

  68. Hiesberger T, Gourley E, Ward CJ, et al. Primary cilia-dependent Ca2+ signalling induces the proteolytic cleavage and nuclear translocation of fibrocystin [abstract]. J Am Soc Nephrol 2005; 16, ASN Renal Week abstracts issue

  69. Bergmann C, Senderek J, Sedlacek B, et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 2003; 14: 76–89

    Article  PubMed  CAS  Google Scholar 

  70. Bergmann C, Senderek J, Küpper F, et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 2004; 23: 453–63

    Article  PubMed  CAS  Google Scholar 

  71. Furu L, Onuchic LF, Gharavi A, et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol 2003; 14: 2004–14

    Article  PubMed  CAS  Google Scholar 

  72. Zerres K, Senderek J, Rudnik-Schöneborn S. New options for prenatal diagnosis in autosomal recessive polycystic kidney disease (ARPKD) by mutation analysis of the PKHD1 gene. Clin Genet 2004; 66: 53–7

    Article  PubMed  CAS  Google Scholar 

  73. Bergmann C, Senderek J, Schneider F, et al. PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 2004; 23: 487–95

    Article  PubMed  CAS  Google Scholar 

  74. Bergmann C, Küpper F, Dornia C, et al. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 2005; 25: 225–31

    Article  PubMed  CAS  Google Scholar 

  75. Sharp AM, Messiaen LM, Page G, et al. Comprehensive genomic analysis for PKHD1 mutations in ARPKD cohorts. J Med Genet 2005; 42: 336–49

    Article  PubMed  CAS  Google Scholar 

  76. Losekoot M, Haarloo C, Ruivenkamp C, et al. Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD). Hum Genet 2005; 25: 1–22

    Google Scholar 

  77. Bergmann C, Küpper F, Schmitt CP, et al. Multi-exon deletions of the PKHD1 gene cause autosomal recessive polycystic kidney disease (ARPKD). J Med Genet 2005; 42: e63

    Article  PubMed  CAS  Google Scholar 

  78. Department of Human Genetics, Aachen University. Mutation database: autosomal recessive polycystic kidney disease (ARPKD/PKHD1) [online]. Available from URL: http://www.humgen.rwth-aachen.de [Accessed 2006 May 9]

  79. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002; 13: 2508–16

    Article  PubMed  CAS  Google Scholar 

  80. Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 2002; 31: 435–8

    PubMed  CAS  Google Scholar 

  81. Mykytyn K, Braun T, Carmi R, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 2001; 28: 188–91

    Article  PubMed  CAS  Google Scholar 

  82. Fan Y, Esmail MA, Ansley SJ, et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 2004; 36: 989–93

    Article  PubMed  CAS  Google Scholar 

  83. Katsanis N, Beales PL, Woods MO, et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 2000; 26: 67–70

    Article  PubMed  CAS  Google Scholar 

  84. Kim JC, Badano JL, Sibold S, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 2004; 36: 462–70

    Article  PubMed  CAS  Google Scholar 

  85. Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117: 541–52

    Article  PubMed  CAS  Google Scholar 

  86. Zhang Q, Taulman PD, Yoder BK. Cystic kidney diseases: all roads lead to the cilium. Physiology (Bethesda) 2004; 19: 225–30

    Article  CAS  Google Scholar 

  87. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33: 129–37

    Article  PubMed  CAS  Google Scholar 

  88. Calvet JP. Ciliary signaling goes down the tubes. Nat Genet 2003; 33: 113–4

    Article  PubMed  CAS  Google Scholar 

  89. Ong AC, Wheatley DN. Polycystic kidney disease: the ciliary connection. Lancet 2003; 361: 774–6

    Article  PubMed  CAS  Google Scholar 

  90. Watnick T, Germino GG. From cilia to cyst. Nat Genet 2003; 34: 355–6

    Article  PubMed  CAS  Google Scholar 

  91. Mykytyn K, Sheffield VC. Establishing a connection between cilia and Bardet-Biedl Syndrome. Trends Mol Med 2004; 10: 106–9

    Article  PubMed  CAS  Google Scholar 

  92. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet 2005; 6: 194–205

    Article  PubMed  CAS  Google Scholar 

  93. Liu W, Murcia NS, Duan Y, et al. Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 2005; 289: F978–88

    Article  PubMed  CAS  Google Scholar 

  94. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 2001; 184: 71–9

    Article  PubMed  CAS  Google Scholar 

  95. Praetorius HA, Spring KR. The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 2003; 12: 517–20

    Article  PubMed  Google Scholar 

  96. Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002; 12: 551–5

    Article  PubMed  CAS  Google Scholar 

  97. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 2003; 100: 5286–91

    Article  PubMed  CAS  Google Scholar 

  98. Davenport JR, Yoder BK. Am J Physiol Renal Physiol 2005 Dec; 289(6): F1159–69

    Article  PubMed  CAS  Google Scholar 

  99. Belibi FA, Reif G, Wallace DP, et al. AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 2004; 66: 964–73

    Article  PubMed  CAS  Google Scholar 

  100. Yamaguchi T, Wallace DP, Magenheimer BS, et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 2004; 279: 40419–30

    Article  PubMed  CAS  Google Scholar 

  101. Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001; 93: 53–62

    Article  PubMed  CAS  Google Scholar 

  102. Gilbert E, Morel A, Tulliez M, et al. In vivo effects of activated H-ras oncogene expressed in the liver and in urogenital tissues. Int J Cancer 1997; 73: 749–56

    Article  PubMed  CAS  Google Scholar 

  103. Schaffner DL, Barrios R, Massey C, et al. Targeting of the rasT24 oncogene to the proximal convoluted tubules in transgenic mice results in hyperplasia and polycystic kidneys. Am J Pathol 1993; 142: 1051–60

    PubMed  CAS  Google Scholar 

  104. Parnell SC, Magenheimer BS, Maser RL, et al. Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 2002; 227: 19566–72

    Article  CAS  Google Scholar 

  105. LeHang N, van der Wal A, van der Bent P, et al. Increased activity of activator protein-1 transcription factor components ATF2, c-Jun, and c-Fos in human and mouse autosomal dominant polycystic kidney disease.J Am Soc Nephrol 2005 Sep; 16(9): 2724–31

    Article  CAS  Google Scholar 

  106. Kim E, Arnould T, Sellin LK, et al. The polycystic kidney disease 1 gene product modulates Wnt signalling. J Biol Chem 1999; 274: 4947–53

    Article  PubMed  CAS  Google Scholar 

  107. Germino GG. Linking cilia to Wnts. Nat Genet 2005; 37: 455–7

    Article  PubMed  CAS  Google Scholar 

  108. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 2005; 37: 537–43

    Article  PubMed  CAS  Google Scholar 

  109. Ross A, May-Simera H, Eichers ER, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005; 37: 1135–40

    Article  PubMed  CAS  Google Scholar 

  110. Bhunia AK, Piontek K, Boletta A, et al. PKD1 induces p21(wafl) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 2002; 109: 157–68

    Article  PubMed  CAS  Google Scholar 

  111. Chauvet V, Tian X, Husson H, et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 2004; 114: 1433–43

    PubMed  CAS  Google Scholar 

  112. Low SH, Vasanth S, Larson CH, et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 2006; 10: 57–69

    Article  PubMed  CAS  Google Scholar 

  113. Torres VE. Therapies to slow polycystic kidney disease. Nephron Exp Nephrol 2004; 98: e1–7

    Article  PubMed  CAS  Google Scholar 

  114. Gattone VH. Emerging therapies for polycystic kidney disease. Curr Opin Pharmacol 2005; 5: 535–42

    Article  PubMed  CAS  Google Scholar 

  115. Gattone VH, Wang X, Harris PC, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 2003; 9: 1323–6

    Article  PubMed  CAS  Google Scholar 

  116. Torres VE, Wang X, Qian Q, et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 2004; 10: 363–4

    Article  PubMed  CAS  Google Scholar 

  117. Wang X, Gattone VH, Harris PC, et al. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol 2005; 16: 846–51

    Article  PubMed  CAS  Google Scholar 

  118. Gattone II VH, Kinne Q, Torres VE. Efficacy of OPC-41061 in the treatment of murine nephronophthisis. J Am Soc Nephrol. In press

  119. Wang X, Gattone II VH, Somlo S, et al. Effectiveness of vasopressin V2 receptor antagonist OPC-41061 on polycystic kidney disease development in Pkd2 WS25/-mice. J Am Soc Nephrol. In press

  120. Ohnishi A, Orita Y, Takagi N, et al. Aquaretic effect of a potent, orally active, nonpeptide V2 antagonist in men. J Pharmacol Exp Ther 1995; 272: 546–51

    PubMed  CAS  Google Scholar 

  121. Grantham JJ. Lillian Jean Kaplan International Prize for advancement in the understanding of polycystic kidney disease: understanding polycystic kidney disease: a systems biology approach. Kidney Int 2003; 64: 1157–62

    Article  PubMed  Google Scholar 

  122. Woo DD, Miao SY, Pelayo JC, et al. Taxol inhibits progression of congenital polycystic kidney disease. Nature 1994; 368: 750–3

    Article  PubMed  CAS  Google Scholar 

  123. Sommardahl CS, Woychik RP, Sweeney WE, et al. Efficacy of taxol in the orpk mouse model of polycystic kidney disease. Pediatr Nephrol 1997; 11: 728–33

    Article  PubMed  CAS  Google Scholar 

  124. Martinez JR, Cowley BD, Gattone VH, et al. The effect of paclitaxel on the progression of polycystic kidney disease in rodents. Am J Kidney Dis 1997; 29: 435–44

    Article  PubMed  CAS  Google Scholar 

  125. Trudel M, D’Agati V, Costantini F. C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 1991; 39: 665–71

    Article  PubMed  CAS  Google Scholar 

  126. Trudel M, Chretien N, D’Agati V. Disappearance of polycystic kidney disease in revertant c-myc transgenic mice. Mamm Genome 1994; 5: 149–52

    Article  PubMed  CAS  Google Scholar 

  127. Cowley BD, Smardo FL, Grantham JJ, et al. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci U S A 1987; 84: 8394–8

    Article  PubMed  CAS  Google Scholar 

  128. Gattone VH, Kuenstler KA, Lindemann GW, et al. Renal expression of a transforming growth factor-alpha transgene accelerates the progression of inherited, slowly progressive polycystic kidney disease in the mouse. J Lab Clin Med 1996; 127: 214–22

    Article  PubMed  CAS  Google Scholar 

  129. Harding MA, Gattone VH, Grantham JJ, et al. Localization of overexpressed cmyc mRNA in polycystic kidneys of the cpk mouse. Kidney Int 1992; 41: 317–25

    Article  PubMed  CAS  Google Scholar 

  130. Husson H, Manavalan P, Akmaev VR, et al. New insights into ADPKD molecular pathways using combination of SAGE and microarray technologies. Genomics 2004; 84: 497–510

    Article  PubMed  CAS  Google Scholar 

  131. Ricker JL, Mata JE, Iversen PL, et al. c-myc antisense oligonucleotide treatment ameliorates murine ARPKD. Kidney Int 2002; 61: 125–31

    Article  Google Scholar 

  132. Gattone VH, Ricker JR. Interventions in polycystic kidney disease using antisense oligonucleotide [letter]. FASEB J 2002; 16: A1097

    Google Scholar 

  133. Dell KM, Nemo R, Sweeney WE, et al. A novel inhibitor of tumor necrosis factor-alpha converting enzyme ameliorates polycystic kidney disease. Kidney Int 2001; 60: 1240–8

    Article  PubMed  CAS  Google Scholar 

  134. Sweeney WE, Chen Y, Nakanishi K, et al. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 2000; 57: 33–40

    Article  PubMed  CAS  Google Scholar 

  135. Torres VE, Sweeney WE, Wang X, et al. EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han: SPRD rats. Kidney Int 2003; 64: 1573–9

    Article  PubMed  CAS  Google Scholar 

  136. vonVigier RO, Sweeney WE, Murcia NS, et al. Receptor tyrosine kinase inhibition attenuates hepatobiliary abnormalities in a murine model of autosomal recessive polycystic kidney disease [abstract]. J Am Soc Nephrol 2004; 15: 57A

    Google Scholar 

  137. Gattone VH, Lowden DA, Cowley BD. Epidermal growth factor ameliorates autosomal recessive polycystic kidney disease in mice. Dev Biol 1995; 169: 504–10

    Article  PubMed  CAS  Google Scholar 

  138. Nakanishi K, Gattone VH, Sweeney WE, et al. Renal dysfunction but not cystic change is ameliorated by neonatal epidermal growth factor in bpk mice. Pediatr Nephrol 2001; 16: 45–50

    Article  PubMed  CAS  Google Scholar 

  139. Torres VE, Sweeney WE, Wang X, et al. Epidermal growth factor receptor tyrosine kinase inhibition is not protective in PCK rats. Kidney Int 2004; 66: 1766–73

    Article  PubMed  CAS  Google Scholar 

  140. Gattone VH, Ricker JL, Trambaugh CM, et al. Multiorgan mRNA misexpression in murine autosomal recessive polycystic kidney disease. Kidney Int 2002; 62: 1560–9

    Article  PubMed  CAS  Google Scholar 

  141. Orellana SA, Sweeney WE, Neff CD, et al. Epidermal growth factor receptor expression is abnormal in murine polycystic kidney. Kidney Int 1995; 47: 490–9

    Article  PubMed  CAS  Google Scholar 

  142. Sweeney WE, Avner ED. Functional activity of epidermal growth factor receptors in autosomal recessive polycystic kidney disease. Am J Physiol 1998; 275 (3 Pt 2): F387–94

    PubMed  CAS  Google Scholar 

  143. Nauta J, Sweeney WE, Rutledge JC, et al. Biliary epithelial cells from mice with congenital polycystic kidney disease are hyperresponsive to epidermal growth factor. Pediatr Res 1995; 37: 755–63

    Article  PubMed  CAS  Google Scholar 

  144. Gattone VH, Andrews GK, Niu FW, et al. Defective epidermal growth factor gene expression in mice with polycystic kidney disease. Dev Biol 1990; 138: 225–30

    Article  PubMed  CAS  Google Scholar 

  145. Cowley BD, Rupp JC. Abnormal expression of epidermal growth factor and sulfated glycoprotein SGP-2 messenger RNA in a rat model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 1995; 6: 1679–81

    PubMed  CAS  Google Scholar 

  146. Weinstein T, Hwang D, Lev-Ran A, et al. Excretion of epidermal growth factor in human adult polycystic kidney disease. Isr J Med Sci. 1997; 33: 641–2

    PubMed  CAS  Google Scholar 

  147. Tao Y, Kim J, Schrier RW, et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 2005; 16: 46–51

    Article  PubMed  CAS  Google Scholar 

  148. McKee B, Perrone R, Gattone VH. Rapamycin ameliorates murine polycystic kidney disease [abstract].Fed Proc 2005; 19: A194

    Google Scholar 

  149. Tao Y, Kim J, Faubel S, et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci U S A 2005; 102: 6954–9

    Article  PubMed  CAS  Google Scholar 

  150. Gattone VH, Cowley BD, Barash BD, et al. Methylprednisolone retards the progression of inherited polycystic kidney disease in rodents. Am J Kidney Dis 1995; 25: 302–13

    Article  PubMed  CAS  Google Scholar 

  151. Ogborn MR, Crocker JF. Na-K ATPase activity in murine glucocorticoid induced polycystic kidney disease in vivo. Clin Invest Med 1993; 16: 22–8

    PubMed  CAS  Google Scholar 

  152. Ruggenenti P, Remuzzi A, Ondei P, et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 2005; 68: 206–16

    Article  PubMed  CAS  Google Scholar 

  153. Gambineri A, Patton L, De Iasio R, et al. Efficacy of octreotide-LAR in dieting women with abdominal obesity and polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90: 3854–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) [KZ], the German-Israeli Foundation (GIF) [Carsten Bergmann], and the START program of the medical faculty of Aachen University (Carsten Bergmann). Carsten Bergmann is a recipient of a scholarship of the German Kidney Foundation (Deutsche Nierenstiftung).

The authors have no conflicts of interest that are directly relevant to the contents of this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Bergmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, C., Frank, V., Küpper, F. et al. Diagnosis, Pathogenesis, and Treatment Prospects in Cystic Kidney Disease. Mol Diag Ther 10, 163–174 (2006). https://doi.org/10.1007/BF03256455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256455

Keywords

Navigation