Skip to main content

Advertisement

Log in

Detecting and Treating Cancer with Nanotechnology

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Nanotechnology offers many opportunities for enhanced diagnostic and therapeutic medicine against cancer and other diseases. In this review, the special properties that result from the nanoscale size of quantum dots, metal colloids, superparamagnetic iron oxide, and carbon-based nanostructures are reviewed and interpreted against a background of the structural and electronic detail that gives rise to their nanotechnologic behavior. The detection and treatment of cancer is emphasized, with special attention paid to the biologic targeting of the disease. The future of nanotechnology in cancer research and clinical practice is projected to focus on ‘theranostic’ nanoparticles that are both diagnostic and therapeutic by design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. NCI Nanotechnology Initiative. Cancer nanotechnology plan: a strategic initiative to transform clinical oncology and basic research through the directed application of nanotechnology. 2004 Jul [online]. Available from URL: http://nano.cancer.gov/about_alliance/cancer_nanotechnology_plan.pdf [Accessed 2008 Jan 23]

  2. Agrawal A, Xing Y, Gao X, et al. Quantum dots. In: Vo-Dinh T, editor. Nanotechnology in biology: methods, devices, and applications. Boca Raton (FL): CRC Press, 2007: 1–15

    Google Scholar 

  3. Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 2006; 18(15): 1953–64

    Article  CAS  Google Scholar 

  4. Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30

    Article  PubMed  CAS  Google Scholar 

  5. Hirsch LR, Gobin AM, Lowery AR, et al. Metal nanoshells. Ann Biomed Eng 2006; 34(1): 15–22

    Article  PubMed  Google Scholar 

  6. Sonvico F, Dubernet C, Colombo P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Design 2005; 11(16): 2091–105

    Article  CAS  Google Scholar 

  7. Wang H, Brandl DW, Nordlander P, et al. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007; 40(1): 53–62

    Article  PubMed  CAS  Google Scholar 

  8. Duguet E, Vasseur S, Mornet S, et al. Magnetic nanoparticles and their applications in medicine. Nanomed 2006; 1(2): 157–68

    Article  CAS  Google Scholar 

  9. Corot C, Robert P, Idee J-M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58(14): 1471–504

    Article  PubMed  CAS  Google Scholar 

  10. Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev 2006; 106(3): 1105–36

    Article  PubMed  CAS  Google Scholar 

  11. Guldi DM, Rahman GMA, Sgobba V, et al. Multifunctional molecular carbon materials: from fullerenes to carbon nanotubes. Chem Soc Rev 2006; 35(5): 471–87

    Article  PubMed  CAS  Google Scholar 

  12. Hartschuh A, Pedrosa HN, Peterson J, et al. Single carbon nanotube optical spectroscopy. Chem Phys Chem 2005; 6(4): 577–82

    Article  PubMed  CAS  Google Scholar 

  13. Green M. Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 2005; 24: 3002–11

    Article  CAS  Google Scholar 

  14. Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90(12): 2555–60

    Article  CAS  Google Scholar 

  15. Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Phys Chem 1984; 80(9): 4403–9

    Article  CAS  Google Scholar 

  16. Brachez Jr M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6

    Article  Google Scholar 

  17. Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1): 47–51

    Article  PubMed  CAS  Google Scholar 

  18. Shepard JRE. Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 2006; 78(8): 2478–86

    Article  PubMed  CAS  Google Scholar 

  19. Levy M, Cater SF, Ellington AD. Quantum-dot aptamer beacons for the detection of proteins. Chem Bio Chem 2005; 6(12): 2163–6

    Article  PubMed  CAS  Google Scholar 

  20. Chan P, Yuen T, Ruf F, et al. Method for multiplex cellular detection of mRN As using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 2005; 33(18): e161/1–8

    Article  CAS  Google Scholar 

  21. Ho Y-P, Kung MC, Yang S, et al. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 2005; 5(9): 1693–7

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007; 7(6): 1711–6

    Article  PubMed  CAS  Google Scholar 

  23. So M-K, Xu C, Loening AM, et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006; 24(3): 339–43

    Article  PubMed  CAS  Google Scholar 

  24. Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6(4): 669–76

    Article  PubMed  CAS  Google Scholar 

  25. Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal Anti-HER2 antibody in tumors of mice. Cancer Res 2007; 67(3): 1138–44

    Article  PubMed  CAS  Google Scholar 

  26. Yu X, Chen L, Li K, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 2007; 12(1): 014008/1–5

    Article  CAS  Google Scholar 

  27. Gao X, Chung LWK, Nie S. Quantum dots for in vivo molecular and cellular imaging. Meth Mol Biol 2007; 374 (Quantum Dots): 135–45

    CAS  Google Scholar 

  28. Toms SA, Daneshvar H, Muhammad O, et al. Optical detection of brain tumors using quantum dots. Proceedings of the SPIE; 2005 Nov. In: Analoui M, Dunn DA, editors. Optical methods in drag discovery and development. Bellingham (WA): SPIE, 2005 [online]. Available from URL: http://adsabs.harvard.edu/abs/2005SPIE.6009..125T [Accessed 2008 Feb 6]

    Google Scholar 

  29. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385): 2016–8

    Article  PubMed  CAS  Google Scholar 

  30. Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconj Chem 2004; 15(1): 79–86

    Article  CAS  Google Scholar 

  31. Akerman ME, Chan WCW, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21

    Article  PubMed  CAS  Google Scholar 

  32. Grecco HE, Lidke KA, Heintzmann R, et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Micro Res Tech 2004; 65(4/5): 169–79

    Article  CAS  Google Scholar 

  33. Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 2005; 102(21): 7583–8

    Article  PubMed  CAS  Google Scholar 

  34. Pinaud F, King D, Moore H-P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS Nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004; 126(19): 6115–23

    Article  PubMed  CAS  Google Scholar 

  35. Babu P, Sinha S, Surolia A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconj Chem 2007; 18(1): 146–51

    Article  CAS  Google Scholar 

  36. Sun X-L, Cui W, Haller C, et al. Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chem Bio Chem 2004; 5(11): 1593–6

    Article  PubMed  CAS  Google Scholar 

  37. Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969–76

    Article  PubMed  CAS  Google Scholar 

  38. Goldman ER, Clapp AR, Anderson GP, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76(3): 684–8

    Article  PubMed  CAS  Google Scholar 

  39. Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41–6

    Article  PubMed  CAS  Google Scholar 

  40. Zhu L, Ang S, Liu W-T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 2004; 70(1): 597–8

    Article  PubMed  CAS  Google Scholar 

  41. Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007 Oct; 25(10): 1165–70

    Article  CAS  Google Scholar 

  42. Jackson JB, Halas NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001; 105(14): 2743–6

    Article  CAS  Google Scholar 

  43. Luo Y, Lee SK, Hofmeister H, et al. Pt nanoshell tubes by template wetting. Nano Lett 2004; 4(1): 143–7

    Article  CAS  Google Scholar 

  44. Wang J, Zhu Y, Wu Y, et al. Fabrication, assembly and magnetic properties of nickel hollow nanoballs. Mod Phys Lett B 2006; 20(10): 549–55

    Article  CAS  Google Scholar 

  45. Sershen SR, Westcott SL, Halas NJ, et al. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett 2002; 80(24): 4609–11

    Article  CAS  Google Scholar 

  46. Oldenburg SJ, Averitt RD, Westcott SL, et al. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2,3,4): 243–7

    Article  CAS  Google Scholar 

  47. Mohamed MB, Ismail KZ, Link S, et al. Thermal reshaping of gold nanorods in micelles. J Phys Chem B 1998; 102(47): 9370–4

    Article  CAS  Google Scholar 

  48. Durr NJ, Larson T, Smith DK, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007; 7(4): 941–5

    Article  PubMed  CAS  Google Scholar 

  49. Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Mater Lett 2006; 60(15): 1896–900

    Article  CAS  Google Scholar 

  50. Chen J, Saeki F, Wiley BJ, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5(3): 473–7

    Article  PubMed  CAS  Google Scholar 

  51. Hao F, Nehl CL, Hafner JH, et al. Plasmon resonances of a gold nanostar. Nano Lett 2007; 7(3): 729–32

    Article  PubMed  CAS  Google Scholar 

  52. Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238–48

    Article  PubMed  CAS  Google Scholar 

  53. Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007 Jul; 7(7): 1929–34

    Article  PubMed  CAS  Google Scholar 

  54. Copland JA, Eghtedari M, Popov VL, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 2004; 6(5): 341–9

    Article  PubMed  Google Scholar 

  55. Fu K, Sun J, Lin AWH, et al. Polarized angular dependent light scattering properties of bare and PEGylated gold nanoshells. Curr Nanosci 2007; 3(2): 167–70

    Article  CAS  Google Scholar 

  56. Loo C, Hirsch L, Lee M-H, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Lett 2005; 30(9): 1012–4

    Article  CAS  Google Scholar 

  57. Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003; 100(23): 13549–54

    Article  PubMed  CAS  Google Scholar 

  58. Overgaard K, Overgaard J. Investigations on the possibility of a thermic tumour therapy: I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer 1972; 8(1): 65–78

    PubMed  CAS  Google Scholar 

  59. Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167–81

    Article  CAS  Google Scholar 

  60. Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51(3): 293–8

    Article  PubMed  CAS  Google Scholar 

  61. Tartaj P, Morales MdP, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R182–97

    Article  CAS  Google Scholar 

  62. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterial 2005; 26(18): 3995–4021

    Article  CAS  Google Scholar 

  63. Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Coll Inter Sci 1996; 177(2): 490–4

    Article  CAS  Google Scholar 

  64. Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline medium: yield and particle size control. J Chimie Physique Phys Chimie Biol 1987; 84(7–8): 967–73

    CAS  Google Scholar 

  65. Pileni MP. Reverse micelles as microreactors. J Phys Chem 1993; 97(27): 6961–73

    Article  CAS  Google Scholar 

  66. Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000; 403(6765): 65–7

    Article  PubMed  CAS  Google Scholar 

  67. Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002; 23(7): 1553–61

    Article  PubMed  CAS  Google Scholar 

  68. Pileni M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2003; 2(3): 145–50

    Article  PubMed  CAS  Google Scholar 

  69. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 2003; 13(6): 1266–76

    PubMed  Google Scholar 

  70. Gruttner C, Teller J. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magn Magn Mater 1999; 194(1–3): 8–15

    Article  CAS  Google Scholar 

  71. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003; 36(13): R198–206

    Article  CAS  Google Scholar 

  72. Ji X, Shao R, Elliott AM, et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J Phys Chem C 2007; 111(17): 6245–51

    Article  CAS  Google Scholar 

  73. Merbach AE, Toth E, editors. The chemistry of contrast agents in medical magnetic resonance imaging. New York: Wiley, 2001

    Google Scholar 

  74. Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161–75

    Article  CAS  Google Scholar 

  75. Taupitz M, Wagner S, Schnorr J, et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39(7): 394–405

    Article  PubMed  CAS  Google Scholar 

  76. Clement O, Siauve N, Cuenod CA, et al. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 1998; 9(3): 167–82

    Article  PubMed  CAS  Google Scholar 

  77. Reimer P, Marx C, Rummeny EJ, et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J Magn Reson Imaging 1997; 7(6): 945–9

    Article  PubMed  CAS  Google Scholar 

  78. McLachlan SJ, Morris MR, Lucas MA, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 1994; 4(3): 301–7

    Article  PubMed  CAS  Google Scholar 

  79. Li W, Tutton S, Vu AT, et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 2005; 21(1): 46–52

    Article  PubMed  Google Scholar 

  80. Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998; 8(7): 1198–204

    Article  PubMed  CAS  Google Scholar 

  81. Schulze E, Ferrucci Jr JT, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol 1995; 30(10): 604–10

    Article  PubMed  CAS  Google Scholar 

  82. Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005; 93(1): 131–6

    Article  PubMed  CAS  Google Scholar 

  83. Funovics MA, Kapeller B, Hoeller C, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004; 22(6): 843–50

    Article  PubMed  CAS  Google Scholar 

  84. Tsourkas A, Shinde-Patil VR, Kelly KA, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconj Chem 2005; 16(3): 576–81

    Article  CAS  Google Scholar 

  85. Josephson L, Tung C-H, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconj Chem 1999; 10(2): 186–91

    Article  CAS  Google Scholar 

  86. Zhao M, Kircher Moritz F, Josephson L, et al. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconj Chem 2002; 13(4): 840–4

    Article  CAS  Google Scholar 

  87. Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 2006; 78(3): 550–7

    PubMed  Google Scholar 

  88. Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233(3): 781–9

    Article  PubMed  Google Scholar 

  89. Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003; 228(2): 480–7

    Article  PubMed  Google Scholar 

  90. Leuschner C, Kumar CSSR, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99(2): 163–76

    Article  PubMed  CAS  Google Scholar 

  91. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252(1–3): 370–4

    Article  CAS  Google Scholar 

  92. Jordan A, Rheinlaender T, Waldoefner N, et al. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J Nanopart Res 2003; 5(5–6): 597–600

    Article  CAS  Google Scholar 

  93. Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 2007; 23(3): 315–23

    Article  PubMed  CAS  Google Scholar 

  94. Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature 1985; 318(6042): 162–3

    Article  CAS  Google Scholar 

  95. Haddon RC. Carbon nanotubes. Acc Chem Res 2002; 35(12): 997

    Article  PubMed  CAS  Google Scholar 

  96. Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 2002; 35(12): 1035–44

    Article  PubMed  CAS  Google Scholar 

  97. Cognet L, Tsyboulski DA, Rocha J-DR, et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 2007; 316(5830): 1465–8

    Article  PubMed  CAS  Google Scholar 

  98. Cherukuri P, Bachilo SM, Litovsky SH, et al. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004; 126(48): 15638–9

    Article  PubMed  CAS  Google Scholar 

  99. Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006; 103(50): 18882–6

    Article  PubMed  CAS  Google Scholar 

  100. Leeuw TK, Reith RM, Simonette RA, et al. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 2007; 7(9): 2650–4

    Article  PubMed  CAS  Google Scholar 

  101. Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005; 102(33): 11600–5

    Article  PubMed  CAS  Google Scholar 

  102. Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007; 110(12): 2654–65

    Article  PubMed  CAS  Google Scholar 

  103. Bolskar RD, Alford JM, Benedetto AF, et al. Development of Gd@C60 based MRI contrast enhancing agents [abstract no. 0986]. Proceedings of the Electrochemistry Society; 2002 Mar 12–17; Philadelphia (PA) [online]. Available from URL: http://www.electrochem.org/dl/ma/201/pdfs/0986.pdf [Accessed 2008 Jan 22]

  104. Bolskar RD, Benedetto AF, Husebo LO, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C6o[C(COOH)2]io as a MRI contrast agent. J Am Chem Soc 2003; 125(18): 5471–8

    Article  PubMed  CAS  Google Scholar 

  105. Laus S, Sitharaman B, Toth E, et al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]l0. J Am Chem Soc 2005; 127(26): 9368–9

    Article  PubMed  CAS  Google Scholar 

  106. Laus S, Sitharaman B, Toth E, et al. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J Phys Chem C 2007; 111(15): 5633–9

    Article  CAS  Google Scholar 

  107. Sitharaman B, Bolskar RD, Rusakova I, et al. Gd@C60[C(COOH)2]l0 and Gd@C60(OH)x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 2004; 4(12): 2373–8

    Article  CAS  Google Scholar 

  108. Toth E, Bolskar RD, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005; 127(2): 799–805

    Article  PubMed  CAS  Google Scholar 

  109. Sitharaman B, Tran LA, Pham QP, et al. Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Molec Imag 2007; 2(3): 139–46

    Article  CAS  Google Scholar 

  110. Fatouros PP, Corwin FD, Chen Z-J, et al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 2006; 240(3): 756–64

    Article  PubMed  Google Scholar 

  111. Rancan F, Helmreich M, Moelich A, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconj Chem 2007; 18(4): 1078–86

    Article  CAS  Google Scholar 

  112. Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C6o) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006; 28: 3004–6

    Article  CAS  Google Scholar 

  113. Sitharaman B, Kissell KR, Hartman KB, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 2005; 31: 3915–7

    Article  CAS  Google Scholar 

  114. Sitharaman B, Wilson LJ. Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed 2006; 1(3): 291–5

    CAS  Google Scholar 

  115. Hartman KB, Wilson LJ. Carbon nanostructures as a new, high-performance platform for MR molecular imaging. In: Chan WCW, editor. Bio-applications of nanoparticles. Austin (TX): Landes Biosciences, 2007

    Google Scholar 

  116. Gu Z, Peng H, Hauge RH, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002; 2(9): 1009–13

    Article  CAS  Google Scholar 

  117. Hartman KB, Laus S, Bolskar RD, et al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. Epub 2008 Jan 24

  118. Baselga J. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer 2001; 37Suppl. 4: S16–22

    Article  PubMed  CAS  Google Scholar 

  119. Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20(2): 131–6

    Article  PubMed  CAS  Google Scholar 

  120. Labianca R, La Verde N, Garassino MC. Development and clinical indications of cetuximab. Int J Biol Markers 2007; 22(1 Suppl. 4): S40–6

    PubMed  CAS  Google Scholar 

  121. Morgillo F, Bareschino MA, Bianco R, et al. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation 2007 Nov; 75(9): 788–99

    Article  PubMed  CAS  Google Scholar 

  122. Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001; 38(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  123. Hudis CA. Trastuzumab: mechanism of action and use in clinical practice. N Engl J Med 2007; 357(1): 39–51

    Article  PubMed  CAS  Google Scholar 

  124. Meric-Bernstam F, Hung M-C. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res 2006; 12(21): 6326–30

    Article  PubMed  CAS  Google Scholar 

  125. Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 2007 Oct 11; 26(46): 6577–92

    Article  PubMed  CAS  Google Scholar 

  126. Simonds HM, Miles D. Adjuvant treatment of breast cancer: impact of monoclonal antibody therapy directed against the HER2 receptor. Expert Opin Biol Ther 2007; 7(4): 487–91

    Article  PubMed  CAS  Google Scholar 

  127. Inwards DJ, Cilley JC, Winter JN. Radioimmunotherapeutic strategies in autologous hematopoietic stem-cell transplantation for malignant lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 669–84

    Article  PubMed  CAS  Google Scholar 

  128. Liebenguth P, Vogt Temple S. Radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol Nurs 2006; 22(4): 257–66

    Article  PubMed  Google Scholar 

  129. Schaefer-Cutillo J, Friedberg JW, Fisher RI. Novel concepts in radioimmunotherapy for non-Hodgkin’s lymphoma. Oncology 2007; 21(2): 203–12; discussion 214, 217, 221

    PubMed  Google Scholar 

  130. Witzig TE. Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2006; 19(4): 655–68

    Article  PubMed  CAS  Google Scholar 

  131. Fenton C, Perry CM. Gemtuzumab ozogamicin: a review of its use in acute myeloid leukaemia. Drugs 2005; 65(16): 2405–27

    Article  PubMed  CAS  Google Scholar 

  132. Maslak PG, Jurcic JG, Scheinberg DA. Monoclonal antibody therapy of APL. Curr Top Microbiol Immun 2007; 313: 205–19

    Article  CAS  Google Scholar 

  133. O’Brien S, Albitar M, Giles FJ. Monoclonal antibodies in the treatment of leukemia. Curr Molec Med 2005; 5(7): 663–75

    Article  Google Scholar 

  134. O’Mahony D, Bishop MR. Monoclonal antibody therapy. Front Biosci 2006; 11(2): 1620–35

    Article  PubMed  Google Scholar 

  135. Pagano L, Fianchi L, Caira M, et al. The role of gemtuzumab ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007; 26(25): 3679–90

    Article  PubMed  CAS  Google Scholar 

  136. Tallman MS. New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology Am Soc Hematol Educ Program 2005: 143–50

  137. Tsimberidou A-M, Giles FJ, Estey E, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006; 132(4): 398–409

    PubMed  CAS  Google Scholar 

  138. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9): 1137–46

    Article  PubMed  CAS  Google Scholar 

  139. McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48(7): 1180–9

    Article  PubMed  CAS  Google Scholar 

  140. Mackeyev YA, Marks JW, Rosenblum MG, et al. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J Phys Chem B 2005; 109(12): 5482–4

    Article  PubMed  CAS  Google Scholar 

  141. Hartman KB, Hamlin DK, Wilbur DS, et al. 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 2007; 3(9): 1496–9

    Article  PubMed  CAS  Google Scholar 

  142. Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chem Int Ed 2007; 46(12): 2023–7

    Article  CAS  Google Scholar 

  143. Jiang H, Zhang T, Sun X. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. J Surg Res 2005; 126(1): 48–54

    Article  PubMed  CAS  Google Scholar 

  144. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 2006; 13(4): 283–7

    Article  PubMed  CAS  Google Scholar 

  145. Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6(4): 587–91

    Article  PubMed  CAS  Google Scholar 

  146. Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334(4): 1121–6

    Article  PubMed  CAS  Google Scholar 

  147. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006; 384(3): 620–30

    Article  PubMed  CAS  Google Scholar 

  148. Park JH, Kwon S, Nam J-O, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5b-cholanic acid for RGD peptide delivery. J Control Release 2004; 95(3): 579–88

    Article  PubMed  CAS  Google Scholar 

  149. Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421–9

    Article  PubMed  CAS  Google Scholar 

  150. Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63

    Article  PubMed  CAS  Google Scholar 

  151. Cui F-D, Tao A-J, Cun D-M, et al. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci 2007; 96(2): 421–7

    Article  PubMed  CAS  Google Scholar 

  152. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, et al. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 1999; 16(10): 1576–81

    Article  PubMed  CAS  Google Scholar 

  153. Gupta AK, Berry C, Gupta M, et al. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2003; 2(4): 255–61

    Article  Google Scholar 

  154. Leobandung W, Ichikawa H, Fukumori Y, et al. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 2002; 80(1–3): 357–63

    Article  PubMed  CAS  Google Scholar 

  155. Ma Z, Lim TM, Lim L-Y. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1–2): 271–80

    Article  PubMed  CAS  Google Scholar 

  156. Ma Z, Yeoh HH, Lim L-Y. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 2002; 91(6): 1396–404

    Article  PubMed  CAS  Google Scholar 

  157. Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm 2005; 288(2): 289–93

    Article  PubMed  CAS  Google Scholar 

  158. Pan Y, Li Y-J, Zhao H-Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1–2): 139–47

    Article  PubMed  CAS  Google Scholar 

  159. Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392–7

    Article  PubMed  CAS  Google Scholar 

  160. Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1–2): 147–54

    Article  PubMed  CAS  Google Scholar 

  161. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 2001; 218(1–2): 75–80

    Article  PubMed  CAS  Google Scholar 

  162. Pan Y-L, Cai J-Y, Qin L, et al. Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. Acta Biochim Biophys Sin 2006; 38(9): 646–52

    Article  PubMed  CAS  Google Scholar 

  163. Alexiou C, Jurgons R, Seliger C, et al. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res 2007; 27(4A): 2019–22

    PubMed  CAS  Google Scholar 

  164. Fahmy TM, Fong PM, Park J, et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9(2): E171–80

    Article  PubMed  Google Scholar 

  165. Gan ZF, Jiang JS, Yang Y, et al. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 2008 Jan; 84(1): 10–8

    PubMed  Google Scholar 

  166. Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39

    Article  CAS  Google Scholar 

  167. McCarthy JR, Kelly KA, Sun EY, et al. Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007; 2(2): 153–67

    Article  CAS  Google Scholar 

  168. Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12(22): 6677–86

    Article  PubMed  CAS  Google Scholar 

  169. Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 2007; 6(4): 277–88

    PubMed  CAS  Google Scholar 

  170. Wang J-M, Xiao B-L, Zheng J-W, et al. Effect of targeted magnetic nanoparticles containing 5-FU on expression of bcl-2, bax and caspase 3 in nude mice with transplanted human liver cancer. World J Gastroenterol 2007; 13(23): 3171–5

    PubMed  CAS  Google Scholar 

  171. Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 2007; 3(6): 838–50

    Article  PubMed  CAS  Google Scholar 

  172. Xie H-Y, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small 2005; 1(5): 506–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Robert A. Welch Foundation (grant no. C-0627 to Dr Wilson) and the Center for Biological the Environmental Nanotechnology (grant no. NSF EEC-0118007 to Drs Wilson and Hartman). Dr Hartman is a recipient of the Rice University Norman Hackerman Fellowship in Chemistry.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lon J. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, K.B., Wilson, L.J. & Rosenblum, M.G. Detecting and Treating Cancer with Nanotechnology. Mol Diag Ther 12, 1–14 (2008). https://doi.org/10.1007/BF03256264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256264

Keywords

Navigation