Skip to main content
Log in

Improving of the accuracy of in vitro-in vivo linear correlation using kinetic models for ultra sustained release theophylline tablets

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The objective of the current study was to establish and evaluate a new technique to increase the accuracy of the in vitro/in vivo linear correlation of single and multiple dose ultra-sustained release theophylline (USRT) preparation (Xantium®) in hospitalized patients. In vitro, dissolution data for theophylline were collected for 24 h using a USP I (basket) and USP II (paddle) methods. In vivo plasma concentration data were obtained from 8 patients after administration of either single or multiple doses of theophylline. Both in vitro and in vivo results were evaluated by zero-order, first-order, RRSBW, Hixson-Crowell Higuchi, Hopfenberg, Langenbucher, modified Langenbucher and (Bt)a kinetic models. The individual linear correlations between each in vitro and in vivo percent results and their kinetic distributions were established and regression equations were, obtained. The determination coefficient results of the linear kinetic correlations were found to be 0.994 and 0.997 for single and multiple doses by basket method and 0.992 and 0.998 for single and multiple doses by paddle method, respectively. Furthermore, the results of the linear correlations were found as 0.953 and 0.950 for single and multiple doses by basket method and 0.963 and 0.962 for single and multiple doses by paddle method respectively. Therefore, this study suggested that the accuracy of the linear correlation could be improved significantly by using linear kinetic correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman M. (1995): Changing particles in COPD. A new pharmacologic treatment algorithm. Chest., 107, 194–197.

    Article  Google Scholar 

  2. Van Den Brande P., Verhelst F., Demedts M., et al. (1991): Once-daily dosing of a new of a new ultrasustained-release theophylline preparation. Acta Therapeutica., 17, 47–49.

    Google Scholar 

  3. Rieder H., Kaplan E., Schneider B., Coffiner M. (1991): Theophylline in the treatment of obstructive lung diseases. Experience with a 24h sustained releases preparation in 3035 patients. Acta Therapeutica, 15, 173–181.

    Google Scholar 

  4. Varshosaz J., Ghafghazi T., Raisi A., Falamarzian M. (2000): Biopharmaceutical characterization of oral theophylline and aminophylline tablets. Quantitative correlation between dissolution and bioavailability studies. Eurp. J. Pharm. Biopharm., 50, 301–307.

    Article  CAS  Google Scholar 

  5. Shan-Yang L., Yuh-Horng K., Hsiao-Ning C. (1990): Preliminary evaluation of the correlation in vitro release and in vivo bioavailability of two aminophylline slow-release tablets. J. Pharm. Sci., 79, 326–330.

    Article  Google Scholar 

  6. Musko Zs., Pintye-Hodi K., Gaspar R, et al. (2001): Study of in vitro and in vivo dissolution of theophylline from film-coated pellets. Eurp. J. Pharm. Biopharm., 51, 143–146.

    Article  CAS  Google Scholar 

  7. Pillay V., Fassihi R. (1998): Evaluation and comparison data derived fom different modified release dosage forms: an alternative method. J. Control Release, 55, 45–55.

    Article  PubMed  CAS  Google Scholar 

  8. Von-Nieciecki A., Fuchs W.S. Pabst G. et al. (1998): In vivo verification of in vitro release specifications of a theophylline sustained-release preparation. Arzneimittelforschung, 48, 580–583

    PubMed  CAS  Google Scholar 

  9. Sirisuth N., Eddington N.D. (2002): The influence of first pass metabolism on the development and validation of an IVIVC for metoproteronol extended release tablets. Eurp. J. Pharm. Biopharm., 53, 301–309.

    Article  CAS  Google Scholar 

  10. Uppoor V.R.S. (2001): Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations J. Cont. Rel., 72, 127–132.

    Article  CAS  Google Scholar 

  11. Balan G., Timmins P., Greene D.S., Marathe P.H. (2001): In vitro-in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J. Pharm. Sci., 90, 1176–1185.

    Article  PubMed  CAS  Google Scholar 

  12. FDA, Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, And Application of in Vitro/in Vivo Correlations, (1997).

  13. Takka S., Sakr A., Butler J. (2003): Development and validation of an in vitro-in vivo correlation for buspirone hydrochloride extended release tablets. J. Cont. Rel., 14, 147–157.

    Article  Google Scholar 

  14. Al-Behaisi S., Antal I, Morovja G. (2002): In vitro simulation of food effect on dissolution of deremciclane film-coated tablets and correlation with in vivo data in healthy volunteers. Eur. J. Pharm. Sci. 15, 157–162.

    Article  PubMed  CAS  Google Scholar 

  15. Karasulu H.Y., Ertan G., Köse T., Güneri T. (1996): In vitro-in vivo correlations of nitrofurantoin matrix tablet formulation. Eur. J. Drug Metab. Pharmacokinet. 21, 27–31.

    Article  PubMed  CAS  Google Scholar 

  16. Corrigan O.I., Devlin Y., Butler J. (2003): Influence of dissolution medium buffer composition on ketoprofen release from ER products and in vitro-in vivo correlation. Int. J. Pharm., 254, 147–154.

    Article  PubMed  CAS  Google Scholar 

  17. Rostami-Hodjegan A., Shiran M.R., Tucker G.T. (2002): A new rapidly absorbed paracetamol tablet containing sodium bicarbonate. II. Dissolution studies and in vitro/in vivo correlation. Drug Dev. Ind. Pharm., 53, 301–309.

    Google Scholar 

  18. Sirisuth N. Eddington N.D. (2002): The influence of first pass metabolism on the development and validation of an IVIC for metoprolol extended release tablets. Eur. J. Pharm. Biopharm. 53, 301–309.

    Article  PubMed  CAS  Google Scholar 

  19. Kortejarvi H., Mikkola J., Backman M., Antila S., Marvola M. (2002): Development of level A,B and C in vitro-in vivo correlations for modified-release levosimendan capsules. Int. J. Pharm., 241, 87–89.

    Article  PubMed  CAS  Google Scholar 

  20. Langenbucher F. (2003): Handling of computational in vitro/in vivo correlation problems by Microsoft Excell II. Distribution functions and moments. Eur. J. Pharm. Biopharm., 55, 77–84.

    Article  PubMed  CAS  Google Scholar 

  21. The United States Pharmacopeia XXIII (1995): Marck Publishing Co., Easton.

  22. Aktogu S., Aydogdu A., Önal A., Tuksavul F. (1999): Once-daily dosing of a ultrasustained-release theophylline preparation. Sol. Hast., 10, 61–65.

    Google Scholar 

  23. Aktogu S., Aydogdu A., Önal A., Tuksavul F. (1997): A pharmacokinetic study of sustained release theophylline preparations. The European Respiratory Journal, ERS Annual Congress, P1539.

  24. Ertan G., Karasulu H.Y., Karasulu E., Ege M.A., Köse T., Güneri T. (2000): A new in vitro/in vivo kinetic correlation method for nitrofurantoin matrix tablet formulations. Drug Dev. Ind. Pharm., 26, 737–743.

    Article  PubMed  CAS  Google Scholar 

  25. Ege M.A., Karasulu H.Y., Karasulu E., Ertan G (2001): A computer program designed for in vitro dissolution kinetics, in vitro-invivo kinetic correlations and routine applications. 4th Central Europan Symposium on Pharmaceutical Technology, 23–25 September, Vienna, Sci. Pharm. 69 (3) http://pharm.ege.edu.tr/applications

  26. Mandal T.K., Chiao C.S., Ace L.N. (1995): Evaluation of in vitro/in vivo correlation utilizing a rotating basket-paddle dissolution apparatus. Drug Dev. Ind. Pharm., 21, 1529–1534

    Article  CAS  Google Scholar 

  27. Munday D.L., Fassihi A.R. (1995): In vitro-in vivo correlation studies on a novel controlled release theophylline delivery system and on theodur tablets. Int. J. Pharm., 118, 251–255.

    Article  CAS  Google Scholar 

  28. Chung B.H., Shim C.K. (1987): Dissolution of theophylline from sustained release dosage forms and correlation with saliva bioavailability parameters. J. Pharm. Sci., 76, 784–787.

    Article  PubMed  CAS  Google Scholar 

  29. Brockmeier D., Dangler H.J., Voegele D. (1985): In vitro-in vivo correlation of dissolution, a time scalling problem? Transformation of in vitro results to the in vivo situation, using theophylline as a practical example. Eur. J. Clin. Pharmacol., 28, 291–300.

    Article  PubMed  CAS  Google Scholar 

  30. Karasulu E., Karasulu H.Y., Ertan G., Kirilmaz L., Güneri T. (2003): Extended release lipophilic indomethacin microspheres: formulation factors and mathematical equations fitted drug release rates. Eur. J. Pharm. Sci., 19, 99–104

    Article  PubMed  CAS  Google Scholar 

  31. Karasulu H.Y. Ertan G., Köse T. (2000): Modeling of theophylline release from different geometrical erodible tablets. Eur. J. Pharm. Biopharm., 49, 177–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasulu, E., Aktogu, S., Karasulu, H.Y. et al. Improving of the accuracy of in vitro-in vivo linear correlation using kinetic models for ultra sustained release theophylline tablets. European Journal of Drug Metabolism and Pharmacokinetics 28, 301–307 (2003). https://doi.org/10.1007/BF03220183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220183

Keywords

Navigation