Skip to main content
Log in

In vitro andin vivo application of PLGA nanofiber for artificial blood vessel

  • Feature article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the duallayered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L’Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. F. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister,Nat. Med.,12, 361 (2006).

    Article  Google Scholar 

  2. E. R. Edelman,Circ. Res.,85, 111 (1999).

    Google Scholar 

  3. P. I. Musey, S. M. Ibim, and N. K. Talukder,Ann. N.Y. Acad. Sci.,961, 279 (2002).

    Article  CAS  Google Scholar 

  4. G. W. Bos, A. A. Poot, T. Beugeling, W. G. van Aken, and J. Feijen,Arch. Physiol. Biochem.,106, 100 (1998).

    Article  CAS  Google Scholar 

  5. D. J. Mooney, L. Cima, R. Langer, L. Johnson, L. K. Hansen, D. E. Ingber, and J. P. Vancanti,Mat. Res. Soc. Symp. Proc.,252, 345 (1992).

    Article  CAS  Google Scholar 

  6. B. C. Isengerg, C. Williams, and R. T. Tranquillo,Circ. Res.,98, 25 (2006).

    Article  Google Scholar 

  7. G. M. Riha, P. H. Lin, A. B. Lumsden, Q. Yao, and C. Chen,Tissue Eng.,11, 1535 (2005).

    Article  CAS  Google Scholar 

  8. P. Bianco and P. G. Robey,Nature,414, 118 (2001).

    Article  CAS  Google Scholar 

  9. K. M. Sales, H. J. Salacinski, N. Alobaid, M. Mikhail, V. Balakrishnan, and A. M. Seifalian,Trends Biotechnol.,23, 461 (2005).

    Article  CAS  Google Scholar 

  10. M. Abedin, Y. Tintut, and L. L. Demer,Circ. Res.,95, 671 (2004).

    Article  CAS  Google Scholar 

  11. G. Matsumura, S. Miyagawa-Tomita, T. Shinoka, Y. Ikada, and H. Kurosawa,Circulation,108, 1729 (2003).

    Article  Google Scholar 

  12. N. L’Heureux, T. N. McAllister, and L. M. de la Fuente,N. Engl. J. Med.,357, 1451 (2007).

    Article  Google Scholar 

  13. S. W. Cho, S. H. Lim, I. K. Kim, Y. S. Hong, S. S. Kim, K. J. Yoo, H. Y. Park, Y. S. Jang, B. C. Chang, C. Y. Choi, and B. S. Kim,Annals. Surgery,241, 506 (2005).

    Article  Google Scholar 

  14. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna,Biomaterials,26, 2603 (2005).

    Article  CAS  Google Scholar 

  15. D. Li, Y. Wang, and Y. Xia,Nano Lett.,3, 1167 (2003).

    Article  CAS  Google Scholar 

  16. H.-K. Bae, C.-P. Chung, and D. J. Chung,Key Eng. Mater.,342–343, 325 (2007).

    Article  Google Scholar 

  17. K. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn,Macromol. Res.,13, 446 (2005).

    Article  CAS  Google Scholar 

  18. I. S. Lee, O. H. Kwon, W. Meng, I. K. Kang, and Y. Ito,Macromol. Res.,12, 374 (2004).

    Article  CAS  Google Scholar 

  19. R. L. Armentano, D. B. Santana, E. I. Cabrera Fischer, S. Graf, H. P. Cámpos, Y. Z. Germán, M. C. Saldías, and I. Alvarez,Cryobiology,52, 17 (2006).

    Article  CAS  Google Scholar 

  20. T. Uchida, S. Ikeda, H. Oura, M. Tada, T. Nakano, T. Fukuda, T. Matsuda, M. Negoro, and F. Arai,J. Biotech.,133, 213 (2008).

    Article  CAS  Google Scholar 

  21. B. S. Kim and D. J. Mooney,J. Biomed. Mater. Res.,41, 322 (1998).

    Article  CAS  Google Scholar 

  22. C. Willams and T. Wick,Tissue Eng.,10, 930 (2004).

    Article  Google Scholar 

  23. S. P. Higgins, A. K. Solan, and L. E. Niklason,J. Biomed. Mater. Res.,67A, 295 (2003).

    Article  CAS  Google Scholar 

  24. D. Shum-Tim, U. Stock, J. Hrkach, T. Shinoka, J. Lien, and M. A. Moses,Ann. Thorac. Surg.,68, 2298 (1999).

    Article  CAS  Google Scholar 

  25. S. Bunda, N. Kaviani, and A. Hinek,J. Biol. Chem.,280, 2341 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong June Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Kim, JH., Yi, G. et al. In vitro andin vivo application of PLGA nanofiber for artificial blood vessel. Macromol. Res. 16, 345–352 (2008). https://doi.org/10.1007/BF03218527

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218527

Keywords

Navigation