Skip to main content
Log in

H3 Propranolol serum levels following lidocaine administration in rats with CCL4 — induced liver damage

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Liver disease alters the pharmacokinetic and pharmacodynamic properties of hepatically eliminated drugs. The main factors influenced are plasma albumin levels, enzyme balance (induction & inhibition) and drug binding to tissue proteins.

The influence of lidocaine on serum, heart and liver propranolol levels in Wistar rats after liver injury induced by carbon tetrachloride CCl4 0.4 ml/kg × 2/wkl, was investigated.

40 male Wistar rats were divided into four groups (I, II, III, IV; n=10), Group I animals received only propranolol (labelled + cold substance) 40 mg/kg/12 h p.o., group II propranolol plus lidocaine in a single dose of 4mg/kg s.c, group III was treated with CCl4 for 6 weeks and received propranolol ×2 at the same dosage as group I, while group VI was treated with CCl4 and the same drug dosage as group II. The simultaneous administration of H3-propranolol and lidocaine increased propranolol levels in the serum and tissues. The liver in damaged animals showed an increase of propranolol level under lidocaine co-administration, probably due to CCl4 — induced liver enzyme activity, resulting in a rapid propranolol metabolism or to competition between both drug protein binding sites. The increased propranolol levels in the heart after lidocaine administration were probably due to attributed to its high affinity for heart tissue. Consequently, as regards the therapeutic approach for patients with liver disease receiving propranolol their propranolol dosage should be reduced when lidocaine is co-administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkinson GR, Schenker S. Drug disposition and liver disease. Drug Metab. Rev. 1975;4(2):139–75.

    Article  CAS  PubMed  Google Scholar 

  2. Wilkinson GR, Schenker S. Effects of liver disease on drug disposition in man. Biochem. Pharmacol. 1976; 25(24):2675–81.

    Article  CAS  PubMed  Google Scholar 

  3. Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease. An update. Clin. Pharmacokinet. 1995; 29(5):370–91.

    Article  CAS  Google Scholar 

  4. Farrell GC, Cooksley WG, Hart P, Powell LW. Drug metabolism in liver disease. Identification of patients with impaired hepatic drug metabolism. Gastroenterology. 1978; 75(4):580–8.

    CAS  PubMed  Google Scholar 

  5. Branch RA, Shand DG. Propranolol disposition in chronic liver disease: a physiological approach. Clin. Pharmacokinet. 1976; 1(4):264–79.

    Article  CAS  PubMed  Google Scholar 

  6. Goto S, Yoshitomi H, Miyamoto A, Yamada H, Fujii S, Nakayama T, Fujiwara K. Further investigations on the binding of loop diuretics to serum proteins from patients with liver disease. J. Pharmaco-biodyn, 1981; 4(ll):865–73.

    CAS  Google Scholar 

  7. Albengres E, Urien S, Kusmierek J, Tillement JP. Benoxaprofen: plasma binding and binding interactions with some drugs and endogenous compounds. Eur. J. Rheumatol. Inflamm. 1982; 5(2):87–97.

    CAS  PubMed  Google Scholar 

  8. Schepke M, Raab P, Hoppe A, Brensing K, Paar D, Potyka U, Sauerbruch T. Propranolol stereoisomer plasma concentrations and portal haemodynamic response in patients with liver cirrhosis. Alimentary Pharmacol. Ther. 1999; (13):1451.

    Article  CAS  Google Scholar 

  9. Weber LW, Boll M, Stampfl A Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as atoxicological model. Crit. Rev. Toxicol. 2003; 33(2):105–36.

    Article  CAS  PubMed  Google Scholar 

  10. Shand DG. Pharmacokinetics of propranolol: a review. Postgrad. Med. J. 1976; 52 Suppl 4:22–25.

    CAS  PubMed  Google Scholar 

  11. Suzuki T, Ohkuma T, Isozaki S. Nonlinear first-pass metabolism of propranolol in the rat. J. Pharmacobiodyn. 1981; 4(2): 131–41.

    CAS  PubMed  Google Scholar 

  12. Miyauchi S, Sawada Y, Iga T, Hanano M, Sugiyama Y. Dose-dependent hepatic handling of l-propranolol determined by multiple indicator dilution method: influence of tissue binding of l-propranolol on its hepatic elimination. Biol. Pharm. Bull. 1993; 16(10):1019–24.

    CAS  PubMed  Google Scholar 

  13. Arthur MJ, Tanner AR, Patel C, Wright R, Renwick AG, George CF. Pharmacology of propranolol in patients with cirrhosis and portal hypertension. Gut. 1985; 26(t):14–9.

    Article  CAS  PubMed  Google Scholar 

  14. Directive 2003/15/EC of the European Parliament and of the Council of 27, February 2003: Amending Council Directive 76/768/EEC on the approximation of the laws of the Member States (text with EEA relevance).

  15. Erlendsdottir H, Knudsen JD, Odenholt I, Cars O, Espersen F, Frimodt-Moller N, Fuursted K, Kristinsson KG, Gudmundsson S. Penicillin pharmacodynamics in four experimental pneumococcal infection models. Antimicrob. Agents Chemother. 2001; 45(4):1078–1085.

    Article  CAS  Google Scholar 

  16. Katsanos CS, Chinkes DL, Sheffield-Moore M, Aarsland A, Kobayashi H, Wolfe RR. Method forthe determination of the arteriovenous muscle protein balance during non-steady-state blood and muscle amino-acid concentrations. Am. J. Physiol. Endocrinol. Metab. 2005; 289(6):E1064–70. Epub 2005 Aug 9.

    Article  CAS  PubMed  Google Scholar 

  17. LeSage GD, Glaser SS, Marucci L, Benedetti A, Phinizy JL, Rodgers R, Caligiuri A, Papa E, Tretjak Z, Jezequel AM, Holcomb LA, Alpini G. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am. J. Physiol. 1999; 276 (5 Pt 1):G1289–301.

    CAS  PubMed  Google Scholar 

  18. Iwamoto K, Watanabe J, Araki K, Satoh M, Deguchi N. Reduced hepatic clearance of propranolol induced by chronic carbon tetrachloride treatment in rats. J. Pharmacol. Exp. Ther. 1985 Aug; 234(2):470–5.

    CAS  PubMed  Google Scholar 

  19. Belpaire FM, de Smet F, Chindavijak B, Fraeyman N, Bogaert MG. Effect of turpentine-induced inflammation on the disposition kinetics of propranolol, metoprolol, and antipyrine in the rat. Fundam. Clin. Pharmacol. 1989; 3(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  20. Rocher I, Decourt S, Leneveu A, Lebrec D, Rosier SP, Flouvat B. Hemodynamic and pharmacokinetic study of propranolol and atenolol in cirrhosis patients. Int. J. Clin. Pharmacol. Ther. Toxicol. 1985 Aug; 23(8):406–10.

    CAS  PubMed  Google Scholar 

  21. Gariepy L, Fenyves D, Villeneuve JP. Propranolol disposition in the rat: variation in hepatic extraction with unbound drug fraction. J. Pharm. Sci. 1992 Mar; 81(3):255–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nies AS, Shand DG, Wilkinson GR. Altered hepatic blood flow and drug disposition. Clin Pharmacokinet. 1976; 1(2):135–55.

    Article  CAS  PubMed  Google Scholar 

  23. Tesseromatis C, Fichtl B, Kurz H. Binding of non-steroid anti-inflammatory drugs and warfarin to liver tissue of rabbits in vitro. Eur. J. Drug Metab. Pharmacokinet. 1987; 12(3):161–7

    Article  CAS  PubMed  Google Scholar 

  24. Saranteas T, Mourouzis C, Dannis C, Alexopoulos C, Lolis E, Tesseromatis C. Effect of various stress models on lidocaine pharmacokinetic properties in the mandible after masseter injection. J. Oral Maxillofac. Surg. 2004; 62(7):771–2.

    Article  Google Scholar 

  25. Saranteas T, Mourouzis C, Koumoura F, Tesseromatis C. Effects of propranolol or paracetamol on lidocaine concentrations in serum and tissues. J. Oral Maxillofac. Surg. 2003; 61(5):604–7.

    Article  PubMed  Google Scholar 

  26. Saranteas T, Mourouzis C, Rallis, G., Anagnostopoulou S., Dannis K. C14 -Lidocaine disposition in serum and tissues of liver diseased rats. J. Oral Maxillofac. Surg. 2006; 64(6):892–5

    Article  PubMed  Google Scholar 

  27. Tincani E, Cioni G, D’Alimonte P, Cristani A, Turrini F, Romagnoli R, Ventura E. Effects of propranolol compared with Clonidine on portal haemodynamics: a double-blind cross-over study using duplex-Doppler ultrasonography. Eur. J. Gastroenterol. Hepatol. 1995; 7(9):893–7.

    CAS  PubMed  Google Scholar 

  28. Villeneuve JP, Dagenais M, Huet PM, Lapointe R, Roy A, Marleau D. Clearance by the liver in cirrhosis. III. Propranolol uptakeby the isolated perfusedhuman liver. Can. J. Physiol. Pharmacol. 1996 Dec;74(12):1327–32.

    Article  CAS  PubMed  Google Scholar 

  29. Kessler KM, Humphries WC Jr, Black M, Spann JF. Quinidine pharmacokinetics in patients with cirrhosis or receiving propranolol. Am. Heart J. 1978;96(5):627–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsiou, A., Tsamouri, M., Anagnostopoulou, S. et al. H3 Propranolol serum levels following lidocaine administration in rats with CCL4 — induced liver damage. European Journal of Drug Metabolism and Pharmacokinetics 31, 97–101 (2006). https://doi.org/10.1007/BF03191125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191125

Keywords

Navigation