Skip to main content
Log in

Preferential inhibition of CYP1A enzymes in hepatic microsomes by mexiletine

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

We examined the inhibitory behavior of theophylline oxidations and a variety of cytochrome P450 (P450)-dependent metabolism in the presence of mexiletine (MEX), using hepatic microsomes from both control mice and mice exposed to β-naphthoflavone (β-NF). Theophylline metabolism, which is mainly catalyzed by CYP1A2, was susceptible to competitive inhibition by MEX. The calculated inhibition constants (Ki) for theophylline 3-demethylation and its 8-hydroxylation were 4.3 μM and 8.3 μM, respectively, which are comparable to the recommended therapeutic serum range for MEX. The inhibitory potency of MEX on cytochrome P450-dependent enzyme activities diverged among the several metabolic reactions, which were probes for CYP1A, 2A, 2C, 2D, 2E, and 3A subfamilies. The Ki value (6.7 μM) for methoxyresorufin O-demethylation mediated by CYP1A2 agreed with those from theophylline oxidations. These metabolic reactions exhibited the smallest Ki values, 1–3 orders of magnitude lower than activities of other constitutive cytochrome P450 species. Similar degrees of inhibition were observed in CYP1A1, a β-NF-inducible isoform with a relatively high conformity to CYP1A2. These results indicate that MEX acts as a selective and potent inhibitor of the CYP1A enzymes responsible for oxidative biotransformation of chemicals such as theophylline. This evidence provides a fundamental explanation for the pharmacokinetic interactions experienced in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckett A.H., Chidomere E.C. (1977): The distribution, metabolism and excretion of mexiletine in man. Postgrad. Med. J., 53: 60–66.

    PubMed  CAS  Google Scholar 

  2. Stanley R., Comer T., Taylor J.L., Saliba D. (1989): Mexiletine-theophylline interaction. Am. J. Med., 86: 733–734.

    Article  PubMed  CAS  Google Scholar 

  3. Ueno K., Miyai K., Seki T., Kawaguchi Y. (1990): Interaction between theophylline and mexiletine. DICP, 24: 471–472.

    PubMed  CAS  Google Scholar 

  4. Loi C-M., Wei X., Vestal R.E. (1991): Inhibition of theophylline metabolism by mexiletine in young male and female nonsmokers. Clin. Pharmacol. Ther., 49: 571–580.

    PubMed  CAS  Google Scholar 

  5. Grygiel J.J., Miners J.O., Drew R., Birkett D.J. (1984): Differential effects of cimetidine on theophylline metabolic pathways. Eur. J. Clin. Pharmacol., 26: 335–340.

    Article  PubMed  CAS  Google Scholar 

  6. Robson R.A., Matthews A.P., Miners J.O.et al. (1987): Characterisation of theophylline metabolism in human liver microsomes. Br. J. Clin. Pharmacol., 24: 293–300.

    PubMed  CAS  Google Scholar 

  7. Joeres R., Klinker H., Heusler J., Epping J., Richter E. (1987): Influence of mexiletine on caffeine elimination. Pharmacol. Ther., 33: 163–169.

    Article  PubMed  CAS  Google Scholar 

  8. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951): Protein measurement with Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  9. Konishi H., Yamaji A. (1994): Measurement of theophylline metabolites produced by reaction with hepatic microsome by high performance liquid chromatography following solid phase extraction. Biomed. Chromatogr., 8: 189–192.

    Article  PubMed  CAS  Google Scholar 

  10. Dutton D.R., Parkinson A. (1989): Reduction of 7-alkoxyresorufins by NADPH-cytochrome P450 reductase and its differential effects on their O-dealkylation by rat liver microsomal cytochrome P450. Arch. Biochem. Biophys., 268: 617–629.

    Article  PubMed  CAS  Google Scholar 

  11. Aitio A. (1978): A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal. Biochem, 85: 488–491.

    Article  PubMed  CAS  Google Scholar 

  12. Morita K., Ono T., Shimakawa H., Wada F. (1984): The effects of H2-receptor antagonists and imidazole on testosterone hydroxylations in mouse hepatic microsomes. Chem. Pharm. Bull., 32: 4043–4048.

    PubMed  CAS  Google Scholar 

  13. Reinke L.A., Moyer M.J. (1985):p-Nitrophenol hydroxylation. A microsomal oxidation which is highly inducible by ethanol. Drug. Metab. Dispos., 13: 548–552.

    PubMed  CAS  Google Scholar 

  14. Nash T. (1953): The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55: 416–421.

    PubMed  CAS  Google Scholar 

  15. Yamaoka K., Tanigawara Y., Nakagawa T., Uno T. (1981): A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn., 4: 879–885.

    PubMed  CAS  Google Scholar 

  16. Hendeles L., Weinberger M. (1983): Theophylline. A state of the art; review. Pharmacotherapy, 3: 2–44.

    PubMed  CAS  Google Scholar 

  17. Stanley L.A., Adams D.J., Balkwill F.R., Griffin D., Wolf C.R. (1991): Differential effects of recombinant interferon α on constitutive and inducible cytochrome P450 isozymes in mouse liver. Biochem. Pharmacol., 42: 311–320.

    Article  PubMed  CAS  Google Scholar 

  18. Nerurkar P.V., Park S.S., Thomas P.E., Nims R.W., Lubet R.A., (1993): Methoxyresorufin and benzoxyresorufin: substrates preferentially metabolized by cytochromes P4501 A2 and 2B, respectively, in the rat and mouse. Biochem. Pharmacol., 46: 933–943.

    Article  PubMed  CAS  Google Scholar 

  19. Kimonen T., Juvonen R.O., Alhava E., Pasanen M. (1995): The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br. J. Pharmacol., 114: 832–836.

    PubMed  CAS  Google Scholar 

  20. Morita K., Shimakawa H. (1992): Selective inhibition of hepatic microsomal drug-metabolism by mexiletine hydrochloride. Jpn. J. Hosp. Pharm., 18: 612–619.

    CAS  Google Scholar 

  21. Wei X., Loi C-M., Schmucker D.L., Vestal R.E. (1995): Characterization of the independent and combined effects of two inhibitors on oxidative drug metabolism in rat liver microsomes. Biochem. Pharmacol., 49: 1657–1663.

    Article  PubMed  CAS  Google Scholar 

  22. Ogiso T., Iwaki M., Uno S. (1995): Inhibition kinetics of theophylline metabolism by mexiletine and its metabolites. Biol. Pharm. Bull., 18: 75–81.

    PubMed  CAS  Google Scholar 

  23. Wei X., Loi C-M., Jarvi E.J., Vestal R.E. (1995): Relative potency of mexiletine, lidocaine, and tocainide as inhibitors of rat liver CYP1A1 activity. Drug Metab. Dispos., 23: 1335–1338.

    PubMed  CAS  Google Scholar 

  24. Ogilvie R.I. (1978): Clinical pharmacokinetics of theophylline. Clin. Pharmacokinet., 3: 267–293.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Z-Y, Kaminsky L.S. (1995): Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem. Pharmacol., 50: 205–211.

    Article  PubMed  CAS  Google Scholar 

  26. Ha H.R., Chen J., Freiburghaus A.U., Follath F. (1995): Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br. J. Clin. Pharmacol., 39: 321–326.

    PubMed  CAS  Google Scholar 

  27. Konishi H., Morita K., Yamaji A. (1995): Multiplicity of cytochrome P-450 species involved in theophylline metabolism in mouse hepatic microsomes. Biol. Pharm. Bull., 18: 576–580.

    PubMed  CAS  Google Scholar 

  28. Konishi H., Morita K., Yamaji A. (1996): Involvement of CYP2E in 8-hydroxylation of theophylline in mouse hepatic microsomes — difference from its N-demethylations. Biol. Pharm. Bull., 19: 593–598.

    PubMed  CAS  Google Scholar 

  29. Rohrig T.P., Harty L.E. (1994): Postmortem distribution of mexiletine in a fatal overdose. J. Anal. Toxicol., 18: 354–356.

    PubMed  CAS  Google Scholar 

  30. McManus M.E., Miners J.O., Gregor D., Stupans I., Birkett D.J. (1988): Theophylline metabolism by human, rabbit and rat liver microsomes and purified forms of cytochrome P450. J. Pharm. Pharmacol., 40: 388–391.

    PubMed  CAS  Google Scholar 

  31. Lewis D.F.V., Ioannides C., Parke D.V. (1986): Molecular dimensions of the substrate binding site of cytochrome P-448. Biochem Pharmacol., 35: 2179–2185.

    Article  PubMed  CAS  Google Scholar 

  32. Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F.P. (1994): Individual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 270: 414–423.

    PubMed  CAS  Google Scholar 

  33. Gonzalez F.J. (1990): Molecular genetics of the P-450 superfamily. Pharmacol. Ther., 45: 1–38.

    Article  PubMed  CAS  Google Scholar 

  34. Abolfathi Z., Pakdel H., Beaune P., Turgeon J. (1995): CYP1A2 is the major enzyme involved in N-oxidation of mexiletine (MEX) in man. Clin. Pharmacol. Ther., 57, 215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konishi, H., Morita, K., Minouchi, T. et al. Preferential inhibition of CYP1A enzymes in hepatic microsomes by mexiletine. Eur. J. Drug Metab. Pharmacokinet. 24, 149–153 (1999). https://doi.org/10.1007/BF03190360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190360

Keywords

Navigation