Skip to main content
Log in

Enantiospecific analysis: Applications in bioanalysis and metabolism

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Enantiospecific analysis has a significant role in modern drug development from discovery-chemistry to the clinical evaluation of novel compounds. Chromatographic techniques, involving the use of either chiral derivatizing agents or chiral stationary phases, represent the most commonly used approaches to enantiospecific analysis. The advantages and limitations of these two techniques are examined using the analysis of the enantiomers of the 2-arylpropionic acids (tiaprofenic acid and ibuprofen) and the chiralN-oxides ofN-ethyl-N-methylaniline and pargyline, as representative examples for each approach. The potential of biosensors in enantiospecific analysis is addressed and some preliminary results on the development of an enantioselective biosensor for the analysis of (S)-warfarin are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Camp, W.H., (1993) Chiral drugs: the FDA perspective on manufacturing and control. J. Pharm. Biomed. Anal., 11, 1167–1172.

    Article  PubMed  Google Scholar 

  2. Wozniak, T.J., Bopp, R.J., Jensen, E.C., (1991) Chiral drugs: an industrial analytical perspective. J. Pharm. Biomed. Anal., 9, 363–382.

    Article  PubMed  CAS  Google Scholar 

  3. Camilleri, P., de Biasi, V., Hutt, A.J., (1994) Resolving the problem. Chem. Brit., 30, 43–46.

    CAS  Google Scholar 

  4. Francotte, E., Junker-Buchheit, A., (1992) Preparative chromatographic separation of enantiomers. J. Chromatogr. Biomed. Appl., 576, 1–45.

    Article  CAS  Google Scholar 

  5. Duddu, S.P., Vakilynejad, M., Jamali, F., Grant, D.J.W. (1993) Stereoselective dissolution of propranolol hydrochloride from hydroxypropylmethylcellulose matrices. Pharm. Res., 10, 1648–1653.

    Article  PubMed  CAS  Google Scholar 

  6. Aubry, A-F., Wainer, I.W., (1993) Anin vitro study of the stereoselective dissolution of (rac)-verapamil from two sustained release formulations. Chirality, 5, 84–90.

    Article  CAS  Google Scholar 

  7. Lurie, I.S., (1992) Micellar electrokinetic capillary chromatography of the enantiomers of amphetamine, methamphetamine and their hydroxyphenethylamine precursors. J. Chromatogr., 605, 269–275.

    Article  CAS  Google Scholar 

  8. Fitzgerald, R.L., Ramos, J.M., Bogema, S.C., Poklis, A. (1988): Resolution of methamphetamine stereoisomers in urine drug testing: urinary excretion of R(-)-methamphetamine following use of nasal inhalers. J. Anal. Toxicol., 12, 255–259.

    PubMed  CAS  Google Scholar 

  9. Cook, C.E., (1993) Enantiomer analysis by competitive binding methods. In: Drug Stereochemistry: Analytical Methods and Pharmacology, 2nd edition ed: I.W. Wainer, Marcel Dekker (New York), pp 35–64.

    Google Scholar 

  10. Lyle, G.G., Lyle, R.E., (1983) Polarimetry In: Asymmetric Synthesis, Volume 1 Analytical Methods, ed: J.D. Morrison, Academic Press (New York), pp 13–27.

    Google Scholar 

  11. Weisman, G.R., (1983) Nuclear magnetic resonance analysis using chiral solvating agents. In: Asymmetric Synthesis, Volume 1 Analytical Methods, ed: J.D. Morrison, Academic Press (New York), pp 153–171.

    Google Scholar 

  12. Zief, M., Crane, L.J. (eds) (1988) Chromatographic Chiral Separations: Marcel Dekker (New York).

    Google Scholar 

  13. Krstulovic, A.M. (ed) (1989) Chiral Separations by HPLC, Ellis Horwood (Chichester).

    Google Scholar 

  14. Vermeulen, N.P.E., Testa, B., (1988) Principles of stereoselective analysis of pesticides. In: Stereoselectivity of Pesticides, Biological and Chemical Problems eds: E.J. Ariens, J.J.S. van Rensen and W. Welling Elsevier (Amsterdam), pp 375–407.

    Google Scholar 

  15. Gal, J., (1987) Stereoisomer separations via derivatization with optically active reagents. Applications to compounds of pharmacological interest. LC-GC, 5, 106–126.

    CAS  Google Scholar 

  16. Rogan, M.M., Altria, K.D., Goodall, D.M., (1994) Enantioselective separations using capillary electrophoresis. Chirality, 6, 25–40.

    Article  CAS  Google Scholar 

  17. Silber, B., Riegelman, S., (1980) Stereospecific assay for (-)-and (+)-propranolol in human and dog plasma. J. Pharmacol. Exp. Ther., 215, 643–648.

    PubMed  CAS  Google Scholar 

  18. Adams, J.D., Woolf, T.F., Trevor, A.J., Williams L.R., Castagnoli, N. (1982) Derivatization of chiral amines with (S,S)-N-trifluoroacetylproline anhydride for GC estimation of enantiomeric composition. J. Pharm. Sci, 71, 658–661.

    Article  PubMed  CAS  Google Scholar 

  19. Muller, N., Lapicque, F., Drelan, E., Gillet, P., Monot, C., Poletto, B., Netter, P., (1993) Direct high-performance liquid chromatographic resolution of the enantiomers of tiaprofenic acid using immobilized human serum albumin. J. Chromatogr. Biomed. Appl., 616, 261–270.

    Article  CAS  Google Scholar 

  20. Lindner, W., Rath, M., Stoschitzky, K., Uray, G., (1989). Enantioselective drug-monitoring of (R)-propranolol and (S)-propranolol in human-plasma via derivatization with optically-active (R,R)-O,O-diacetyltartaric acid anhydride. J. Chromatogr. Biomed. Appl. 487, 375–383.

    Article  CAS  Google Scholar 

  21. Dasai, D.M., Gal, J. (1993) Enantiospecific drug analyis via theortho-phthalaldehyde/homochiral thiol derivatization method. J. Chromatogr. 629, 215–228.

    Article  Google Scholar 

  22. Hutt, A.J., (1990) Enantiospecific analytical methodology: applications in drug metabolism and pharmacokinetics. In: Progress in Drug Metabolism, Volume 12, ed: G.G. Gibson, Taylor & Francis (London), pp 257–361.

    Google Scholar 

  23. Hutt, A.J., Caldwell, J., (1983) The metabolic chiral inversion of 2-arylpropionic acids #x2014; a novel route with pharmacological consequences. J. Pharm. Pharmcol., 35, 693–704.

    CAS  Google Scholar 

  24. Hutt, A.J., Caldwell, J., (1984) The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin. Pharmacokin., 9, 371–373.

    Article  CAS  Google Scholar 

  25. Jamali, F., (1988) Pharmacokinetics of enantiomers of chiral non-steroidal anti-inflammatory drugs. Eur. J. Drug Metab. Pharmacokin., 13, 1–9.

    CAS  Google Scholar 

  26. Evans, A.M., (1992) Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal antiinflammatory drugs. Eur. J. Clin Pharmacaol., 42, 237–256.

    CAS  Google Scholar 

  27. Hutt, A.J., Fournel, S., Caldwell, J., (1986) Application of a radial compression column to the high-performance liquid chromatographic separation of the enantiomers of some 2-arylpropionic acids as their diastereoisomeric (S)-l-(naphthen-l-yl)ethylamides. J. Chromatogr. Biomed. Appl., 378, 409–418.

    Article  CAS  Google Scholar 

  28. Avgerinos, A., Hutt, A.J., (1987) Determination of the enantiomeric composition of ibuprofen in human plasma by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl., 415, 75–83.

    Article  CAS  Google Scholar 

  29. Avgerinos, A., Hutt, A.J., (1990) Interindividual variability in the enantiomeric disposition of ibuprofen following the oral administration of the racemic drug to healthy volunteers. Chirality, 2, 249–256.

    Article  PubMed  CAS  Google Scholar 

  30. Mehvar, R., Jamali, F., Pasutto, F.M., (1988) Rapid and sensitive high-performance liquid chromatographic assay of tiaprofenic acid enantiomers in human plasma and urine. J. Chromatogr. Biomed. Appl., 425, 135–142.

    Article  CAS  Google Scholar 

  31. Ball, G.L. (1992) Master of Science Thesis, University of London

  32. Wright, M.R., Jamali, F., (1993) Limided extent of stereochemical conversion of chiral non-steroidal anti-inflammatory drugs induced by derivatization methods employing ethyl chloroformate. J. Chromatogr. Biomed. Appl., 616, 59–65.

    Article  CAS  Google Scholar 

  33. Dalgliesh, C.E., (1952) The optical resolution of aromatic amino acids on paper chromatograms, J. Chem. Soc., 137, 3940–3942.

    Article  Google Scholar 

  34. Wainer, I.W., (1988) A practical guide to the selection and use of HPLC chiral stationary phases. J.T. Baker (Phillipsburg).

    Google Scholar 

  35. Pirkle, W.H., Welch, C.J., Burke, J.A., Lamm, B., (1992) Target-directed design of chiral stationary phases. Anal. Proc., 29, 225–226.

    Article  CAS  Google Scholar 

  36. Wallworth, D.M., Beesley, T.E., Armstrong, D.W., (1992) Method development techniques on a new multimodal chiral liquid chromatographic column. Anal. Proc., 29, 247–249.

    Article  CAS  Google Scholar 

  37. Hutt, A.J., (1991) Enantiospecific bioanalysis. Anal. Proc., 28, 185–186.

    CAS  Google Scholar 

  38. Hadley, M.R., Oldham, H.G., Camilleri, P., Murphy, J., Hutt, A.J., Damani, L.A., (1993) Stereoselective microsomalN-oxidation ofN-ethyl-N-methylaniline. Biochem. Pharmacol, 45, 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  39. Hadley, M.R., Damani, L.A., Hutt, A.J., Oldham, H.G., Murphy, J., Camilleri, P., (1993) Enantiomeric resolution ofN-alkyl-N-methylanilineN-oxides by high-performance liquid chromatography. Chromatographia, 37, 487–491.

    Article  CAS  Google Scholar 

  40. Hadley, M.R., Oldham, H.G., Damani, L.A., Hutt, A.J., (1994) Asymmetric metabolicN-oxidation ofN-ethyl-N-methylaniline by purified flavin-containig monooxygenase. Chirality, 6, 98–104.

    Article  PubMed  CAS  Google Scholar 

  41. Hadley, M.R., Oldham, H.G., Damani, L.A., Hutt, A.J., (1994) Species variability in the stereoselectiveN-oxidation ofN-ethyl-N-methylaniline. Brit. J. Pharmacol., 111, 326P.

  42. Hadley, M.R., Svajdlenka, E., Damani, L.A., Oldham, H.G., Tribe, J., Camilleri, P., Hutt, A.J., (1994) Species variability in the stereoselectiveN-oxidation of pargyline. Chirality, 6, 91–97.

    Article  PubMed  CAS  Google Scholar 

  43. Weli, A.M., Lindeke, B., (1985) The metabolic fate of pargyline in rat liver microsomes. Biochem, Pharmacol., 34, 1993–1998.

    Article  CAS  Google Scholar 

  44. Weli, A.M., Lindeke, B., (1986) PeroxidativeN-oxidation andN-dealkylation reactions of pargyline. Xenobiotica, 16, 281–288.

    Article  PubMed  CAS  Google Scholar 

  45. Guilbault, G.G., Schmid, R.D., (1991) Biosensors for the determination of drug substances. Biotechnol. Appl. Biochem., 14, 133–145.

    PubMed  CAS  Google Scholar 

  46. Davis, P.J., Rizzo, J.D., (1982) Microbial transformations of warfarin: stereoselective reduction byNocardia corallina andArthrobacter species. Appl. Environ. Microbiol. 43, 884–890.

    PubMed  CAS  Google Scholar 

  47. Hyland, R., McBride, J., Hanlon, G.W., Hutt, A.J., Olliff, C.J. (1990). Biosensors, an approach to drug analysis? Preliminary studies on the development of a warfarin assay. In: Methodological surveys in biochemistry and analysis, Volume 20: Analysis of drugs and metabolites including anti-infective agents, eds: E. Reid, I.D. Wilson, Royal Society of Chemistry, (London), pp 333–336.

    Google Scholar 

  48. McBride, J., Suida, Y., Hanlon, G.W., Hutt, A.J., Olliff, C.J. (1990) Effect of carbon surface on the enantioselectivity of an amperometric biosensor. J. Pharm. Pharmacol., 42, 117P.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutt, A.J., Hadley, M.R. & Tan, S.C. Enantiospecific analysis: Applications in bioanalysis and metabolism. Eur. J. Drug Metab. Pharmacokinet. 19, 241–251 (1994). https://doi.org/10.1007/BF03188927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188927

Keywords

Navigation