Skip to main content
Log in

Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness

  • Scientific Note
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The patients with aortic aneurysm, especially aortic arch aneurysm, are prone to have aortic dissection. For investigation of the effect of aneurysm and wall stiffness on wall stress distribution, both the nonaneurysm arch model and the aneurysm arch model are constructed. The fluid structure interaction in the arch model of aorta was implemented. The results show the stresses are much higher at inflection points in aneurysm model than in nonaneurysm model, and the stresses at media in stiffened wall are higher than in unstiffened wall. The high composite stress is located at inflection points and is much higher in aneurysm model. The arch aneurysm and wall stiffening are important determinants of peak wall stress in aortic wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safi, H.J. and Estrera, A.L.,Aortic dissection, British Journal of Surgery, 91: 523–525, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Macura, K.J., Corl, F.M., Fishman, E.K. and Bluemke, D.A.,Pathogenesis in acute aortic syndromes, American Journal of Roentgenology, 181:309–316, 2003.

    PubMed  Google Scholar 

  3. Mehta, R.H., Bossone, E., Evangelista, A., et al., 2004.Acute type B aortic dissection in elderly patients. Ann. Thorac. Surg., 77, 1622–1629.

    Article  PubMed  Google Scholar 

  4. Kitamura, M., Hashimoto, A., Aomi, S., Imamaki, M. and Koyanagi, H.,Medium-term results after surgery for aortic arch aneurysm with hypothermic cerebral perfusion, Eur. J. Cardiothorac. Surg., 9:697–700, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Calvet, D., Boutouyrie, P., Touze, E., Laloux, B., Mas, J.L. and Laurent, S.,Increased Stiffness of the Carotid Wall Material in Patients with Spontaneous Cervical Artery Dissection. Stroke, 35:2078–2082, 2004.

    Article  PubMed  Google Scholar 

  6. Blacher, J., Asmar, R. and Djane, S.,Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients, Hypertension, 33:1111–1117, 1999.

    PubMed  CAS  Google Scholar 

  7. Blacher, J., London, G.M., and Safar, M.E.,Influence of age and end-stage renal disease on the stiffness of carotid wall material in hypertension, J. Hypertens., 17:237–244, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Avolio, A.P., Chen, S.G. and Wang, R.P.,Effects of ageing on changing arterial compliance and left ventricular load in a northern Chinese urban community, Circulation, 68:50–58, 1983.

    PubMed  CAS  Google Scholar 

  9. Avolio, A., Jones, D. and Tafazzoli-Shadpour, M.,Quantification of alterations in structure and function of elastin in the arterial media, Hypertension, 32:170–175, 1998.

    PubMed  CAS  Google Scholar 

  10. Benetos, A.,Pulse pressure and arterial stiffness in type 1 diabetic patients, Journal of Hypertension, 21:2005–2007, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Gao, F., Watanabe, M. and Matsuzawa, T.,Stress analysis in a layered aortic arch model under pulsatile blood flow, BioMedical Engineering OnLine, 5, 25, 2006.

    Article  PubMed  Google Scholar 

  12. Maxey, T.S., Serfontein, S.J., Reece, T.B., Rheuban, K.S. and Kron, I.L.,Transverse arch hypoplasia may predispose patients to aneurysm formation after patch repair of aortic coarctation, Ann. Thorac. Surg., 76(4):1090–1093, 2003.

    Article  PubMed  Google Scholar 

  13. Riley, W.A., Barnes, R.W., Evans, G.W. and Burke, G.L.,Ultrasonic Measurements of the Elastic Modulus of the Common Carotid Artery: the Atherosclerosis Risk in Communities (ARIC) Study, Stroke, 23:952–956, 1992.

    PubMed  CAS  Google Scholar 

  14. Sekhri, A.R., Lees, W.R. and Adiseshiah, M.,Measurement of aortic compliance in abdominal aortic aneurysms before and after open and endoluminal repair: preliminary results, J Endovasc. Ther., 11:472–482, 2004.

    Article  PubMed  Google Scholar 

  15. Di Martino, E.S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P. and Redaelli, A.,Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm, Med. Eng. Phys. 23:647–655, 2001.

    Article  PubMed  Google Scholar 

  16. Bar-Yoseph P.Z., Mereu S., Chippada S. and Kalro V.J.,Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics, Computational Mechanics, 27:378–395, 2001.

    Article  Google Scholar 

  17. Marzao, A., Luo, X.Y. and Bertram, C.D.,Three-dimensional collapse and steady flow in thick-walled flexible tubes, Journal of Fluid and Structures, 20:817–835, 2005.

    Article  Google Scholar 

  18. Liepsch, D., Moravec, S. and Baumgart, R.,Some Flow Visualization and Laser-Doppler Velocity Measurements in A True-to-scale Elastic Model of A Human Aortic Arch—A New Model Technique, Biorheology, 29:563–580, 1992.

    PubMed  CAS  Google Scholar 

  19. Perktold, K., Resch, M. and Florian, H., Pulsatile Non-Newtonian Flow Characteristics in A Three-dimensional Human Carotid Bifurcation Model, J. Biomech. Eng., 113:464–475, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Pedley, T.J.,The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, 1980.

  21. Nerem, R.M.,Vascular fluid mechanics, the arterial wall, and atherosclerosis, J. Biomech. Eng., 114(3):274–282, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Shahcheraghi N., Dwyer H.A., Cheer A.Y., Barakat A.I. and Rutaganira T.,Unsteady and three-dimensional simulation of blood flow in the human aortic arch, J. Biomech. Eng., 124:378–387, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Endo, S., Sohara, Y. and Karino, T.,Flow Patterns in Dog Aortic Arch Under A Steady Flow Condition Simulating Midsystole, Heart Vessels, 11:180–191, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Fatouraee, N. and Amini, A.A.,Recovery of flow patterns in an abdominal aortic aneurysm phantom from phase contrast MRI, Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. Hilton Head Island, South Carolina, 104–109, 2000.

  25. Li, Z. and Kleinstreuer, C.,Blood flow and structure interactions in a stented abdominal aortic aneurysm model, Medical Engineering & Physics, 27(5): 369–382, 2005.

    Article  Google Scholar 

  26. Marston, W.A., Criado, E., Baird, C.A. and Keagy, B.A.,Reduction of aneurysm pressure and wall stress after endovascular repair of abdominal aortic aneurysm in a canine model, Journal Annals of Vascular Surgery, 10(2):166–173, 1996.

    Article  CAS  Google Scholar 

  27. Stein, P.D. and Sabbah, H.N.,Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves, Circulation Research, 39:58–65, 1976.

    PubMed  CAS  Google Scholar 

  28. Berguer R., Bull J. and Khanafer K.,Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture, Annals of the New York Academy of Sciences, 1085 (1):110–116, 2006.

    Article  PubMed  Google Scholar 

  29. Moayeri, M.S. and Zendehbudi, G.R.,Effects of elastic property of the wall on flow characteristics through arterial stenoses, J. Biomech., 36 (4):525–535, 2003.

    Article  PubMed  CAS  Google Scholar 

  30. Oscuii, H.N., Shadpour, M.T. and Ghalichi, F.,Flow Characteristics in Elastic Arteries Using a Fluid-Structure Interaction Model, American Journal of Applied Sciences, 4(8):516–524, 2007.

    Article  Google Scholar 

  31. Vorp, D.A., Raghavan, M.L. and Webster, M.W.,Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry, J. Vasc. Surg. 27:632–639, 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Raghavan, M.L., Vorp, D.A., Federle, M.P., et al.,Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm, J. Vasc. Surg., 31:760–769, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Sonesson, B., Hansen, F. and Lanne, T.,Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta, J. Vasc. Surg., 26:247–254, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Tsukamoto, S., Shindo, S., Obana, M., Akiyama, K., Shiono, M. and Negishi, N.,DeBakey IIIb aortic dissection originating in a distal aortic arch aneurysm, Ann. Thorac. Cardiovasc. Surg., 9:209–211, 2003.

    PubMed  Google Scholar 

  35. Green, G.R. and Kron, I.L.,Aortic Dissection, Card. Surg. Adult, 2:1095–1122, 2003.

    Google Scholar 

  36. Khan, I.A. and Nair, C.K.,Clinical, Diagnostic, and Management Perspectives of Aortic Dissection, Chest, 122:311–328, 2002.

    Article  PubMed  Google Scholar 

  37. Horsten, J.B., van Steenhoven, A.M. and van Dongen, A.A.,Linear propagation of pulsatile waves in viscoelatic tubes, J. Biomech., 22:477–484, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Giannogloulas, G., Soulis, J., Farmakis, T., Papadopoulou, S., Parcharidis, G. and Louridas, G.,A computational model to predict aortic wall stresses in patients with systolic arterial hypertension, Med. Hypotheses, 65:1191–1195, 2005.

    Article  Google Scholar 

  39. Beller, C.J., Labrosse, M.R., Thubrikar, M.J. and Robicsek, F.,Role of aortic root motion in the pathogenesis of aortic dissection, Circulation, 109:763–769, 2004.

    Article  PubMed  Google Scholar 

  40. Okamoto, R.J., Xu, H., Kouchoukos, N.T., Moon, M.R. and Sundt, T.M. 3rd.,The influence of mechanical properties on wall stress and distensibility of the dilated ascending aorta, J. Thorac. Cardiovasc. Surg., 126(3):842–850, 2003.

    Article  PubMed  Google Scholar 

  41. Vorp, D.A., Schiro, B.J., Ehrlich, M.P., Juvonen, T.S., Ergin, M.A. and Griffith, B.P.,Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta, Ann. Thorac. Surg., 75(4):1210–1214, 2003.

    Article  PubMed  Google Scholar 

  42. Okamoto, R.J., Wagenseil, J.E., DeLong, W.R., Peterson, S.J., Kouchoukos, N.T., and Sundt, T.M. 3rd.,Mechanical Properties of dilated human ascending aorta, Ann. Biomed. Eng., 30(5):624–635, 2002.

    Article  PubMed  Google Scholar 

  43. Borghi, A., Wood, N.B., Mohiaddin, R.H. and Xu, X.Y.,3D geometric reconstruction of thoracic aortic aneurysms, Biomed. Eng. Online, 5, 59, 2006.

    Article  PubMed  Google Scholar 

  44. Mori, D. and Yamaguchi, T.,Computational mechanical analysis of blood flow in the human aortic arch with complex 3-D configuration — a combined effect of the torsion of the aorta and its branches, Bioengineering Conference ASME., 50: 741–742, 2001.

    Google Scholar 

  45. Kilner, P.J., Yang, G.Z., Mohiaddin, R.H., Firmin, D.N. and Longmore, D.B.,Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation, 88: 2235–2247, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Matsuzawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Ohta, O. & Matsuzawa, T. Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness. Australas. Phys. Eng. Sci. Med. 31, 32–41 (2008). https://doi.org/10.1007/BF03178451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178451

Key words

Navigation