Skip to main content
Log in

On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider the perturbed Hamiltonian system

$$u_t = \partial _x \delta H(u) - \varepsilon P(u)$$

with\(H(u) = \int {\left( {\frac{1}{2}u_x^2 + \frac{1}{3}u^3 } \right)} dx\). We prove for various perturbationsP(u) that there is a unique bifurcation point of traveling wave solutions on the curve of relative equilibriau γ such that

$$H(u_\gamma ) = \mathop {\min }\limits_u \left\{ {H(u)\left| { \int {u^2 } = \gamma } \right.} \right\}.$$

As an additional result, the curve γ→H(u γ) is proven to be concave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Benjamin, Lectures on nonlinear wave motion. Lectures in Applied Mathematics, volume 15, American Mathematical Society, 1974, 3–47.

  2. J.L. Bona, P.E. Souganidis, and W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London A,411 (1987), 395–412.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Carr, Applications of the Center Manifold Theory. Applied Mathematical Sciences vol. 35, Springer-Verlag, New York, 1981.

    Google Scholar 

  4. J. Carr, S.N. Chow, and J.K. Hale, Abelian integrals and bifurcation theory. J. Differential Equations,59 (1985), 413–436.

    Article  MATH  MathSciNet  Google Scholar 

  5. B.W. Char, K.O. Geddes, G.H. Gonnet, B. Leong, M.B. Monagan, and S.M. Watt, Maple V Language Reference Manual. Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  6. G. Derks, Coherent structures in the dynamics of perturbed Hamiltonian systems. Ph. D. thesis, University of Twente, 1992.

  7. B. Drachman, S.A. van Gils, and Z. Zhi-fen, Abelian integrals for quadratic vector fields. J. Reine Angew. Math.,382 (1987), 165–180.

    MATH  MathSciNet  Google Scholar 

  8. T. Kawahara and S. Toh, Nonlinear dispersive periodic waves in the presence of instability and damping. Phys. Fluids,28 (1985), 1636–1638.

    Article  Google Scholar 

  9. J.H. Maddocks and R.L. Sachs, On the stability of KdV multi-solution. Technical Report, University of Maryland, 1991.

  10. J.W. Miles, The Korteweg-de Vries equation: A historical essay. J. Fluid Mech.,106 (1981), 131–147.

    Article  MATH  Google Scholar 

  11. H. Roitner, Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis. To be published, 1992.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Derks, G., van Gils, S. On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations. Japan J. Indust. Appl. Math. 10, 413–430 (1993). https://doi.org/10.1007/BF03167282

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167282

Key words

Navigation