Skip to main content
Log in

Endovascular brachytherapy — Treatment planning and radiation protection

Bestrahlungsplanung und Strahlenschutz der endovasalen Brachytherapie

  • Published:
Herz Aims and scope Submit manuscript

Abstract

The risk of restenosis, main late effect limiting the success of percutaneous transluminal coronary artery angioplasty, can be reduced significantly by vascular radiotherapy, subsequent to PTCA. This discovery lead to the development of new irradiation techniques. Endovascular brachytherapy is the choice in treatment of coronary artery stenosis. Successful irradiation, however, requires precise treatment planning. This review addresses the physical possibilities and problems of intravascular brachytherapy planning, and the radiobiologically based definition of the target volume and of structures at risk. Recommendations for dose specification, recording and reporting are given. The criteria for selecting a vascular radiotherapy technique are discussed as well as the possibilities of dosimetric treatment planning and quality assurance based on precise plastic scintillator dosimetry and intravascular ultrasound. Radiation protection and safety must be reconsidered prior to the usage of therapeutic radiation sources in the catheter laboratory and for the decision about emergency plans. Finally, the design of clinical trials, the role of medical physicists, and the future of irradiation treatment of stenosis is discussed.

Zusammenfassung

Die Restenosierung begrenzt als wesentliche Spätreaktion den Erfolg der perkutanen transluminalen Koronarangioplastie (PTCA) bei der Behandlung von Atherosklerosen. Doch jüngste tierexperimentelle und erste klinische Studien bestätigen, daß durch eine vaskuläre Strahlentherapie mit niedrigen Strahlendosen um 20 Gy die Wahrscheinlich der Restenosierung stark gesenkt werden kann. Diese Ergebnisse haben eine stürmische Entwicklung auf dem Gebiet der endovasalen Brachytherapie ausgelöst. Viele neue Bestrahlungstechniken und Strahlenquellen sind entwickelt worden. Die endovasale Brachytherapie mit hochenergetischen Betastrahlern oder niederenergetischen Photonenstrahlern ist zur Behandlung der Koronararterien am besten geeignet, während für die weiteren, peripheren Gefäße Photonen höherer Energie benötigt werden. Voraussetzung zur erfolgreichen Strahlenbehandlung ist die sorgfältige Bestrahlungsplanung. Neue biologische Erkenntnisse zeigen, daß die gesamte Wandung (einschließlich der Adventitia) des durch die interventionelle Maßnahme geschädigten Gefäßabschnittes das Zielvolumen der Strahlentherapie ist. Zur individuellen Bestrahlungsplanung ermöglicht die intravaskuläre Ultraschalltomografie (IVUS) die genaue Lokalisation, während die hochauflösende Plastikszintillator-Dosimetrie die exakte Messung der räumlichen Dosisverteilung endovasaler Strahlenquellen erlaubt. Die Möglichkeiten und Probleme der endovasalen Bestrahlungsplanung werden in dieser Übersicht diskutiert, die Definition von Zielvolumen und Risikostrukturen, die internationalen Empfehlungen zur Strahlerkalibrierung und_-charakterisierung, zur Dosisspezifikation und Dokumentation, die Leistungsfähigkeiten der IVUS-Lokalisation und Plastikszintillator-Dosimetrie zur schnellen dosimetrischen Bestrahlungsplanung sowie die Anforderungen an Strahlenschutz und Sicherheit, an klinische Studien und Routineanwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas MA, Afshari NA, Stadius ML, et al. External beam irradiation inhibits hyperplasia following balloon angioplasty. Int J Cardiol 1997;44:191–202.

    Article  Google Scholar 

  2. Amols HI, Zaider M, Weinberger J, et al. Dosimetric considerations for catheter-based beta and gamma emitters in the therapy of neointimal hyperplasia in human coronary arteries. Int J Radiat Oncol Biol Phys 1996;36:913–21.

    PubMed  CAS  Google Scholar 

  3. Applefeld MM, Slawson RG, Spicer KM, et al. The long term cardiac effects of radiotherapy in patients treated for Hodgkin’s disease. Cancer Treat Rep 1982;66:1003–13.

    PubMed  CAS  Google Scholar 

  4. Austin GE, Ratcliff MB, Hollman J. Intimal proliferation of smooth muscle cells as an explanation for current coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985;6:369–75.

    PubMed  CAS  Google Scholar 

  5. Balter S. Shielding and safety considerations. In: Waksman R, Leon B, eds. Advances in cardiovascular radiation therapy. Washington Hospital Center, 1997:60–3.

  6. Bambynek M, Flühs D, Quast U, et al. High precision, high resolution, and fast plastic scintillator dosimetry system for β-sources applied in cardiovascular brachytherapy. Nucl Instr Meth (in press).

  7. Brenner DJ, Miller RC, Hall EJ. The radiobiology of intravascular irradiation. Int J Radiat Oncol Biol Phys 1996;36:805–10.

    Article  PubMed  CAS  Google Scholar 

  8. Erbel R, Ge J, Görge G, et al. Intravaskuläre Sonographie bei koronarer Herzkrankheit. Dtsch Med Wochenschr 1995;120:847–54.

    Article  PubMed  CAS  Google Scholar 

  9. Fischell T, Kharma BK, Fischell DR, et al. Low-dose, β-particle emission from „stent” wire results in complete, localized inhibition of smooth muscle cell proliferation. Circulation 1994;90:2956–63.

    PubMed  CAS  Google Scholar 

  10. Flühs D, Heintz M, Indenkämpen F, et al. Direct reading measurement of absorbed dose with plastic scintillators — The general concept and applications to ophthalmic dosimetry. Med Phys 1996;23:427–34.

    Article  PubMed  Google Scholar 

  11. Flühs D, Quast U, Heintz M, et al. Dosimetric treatment planning — Fast 2D/3D dosimetry for brachytherapy optimization. Proc XIth Int Conf Rad Therapy. Manchester, ICCR; 1994:38–9.

  12. Forrester JS, Fishbein M, Helfant R, et al. A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. Review. J Am Coll Cardiol 1991;17:758–69.

    Article  PubMed  CAS  Google Scholar 

  13. Ge J, Erbel R, Görge G, et al. Intravascular ultrasound imaging of arterial wall architecture. Echocard.: A J CV Ultrasound Allied Tech 1992;9:475–83.

    CAS  Google Scholar 

  14. Gehmann KE, Gaspar LE, Barnett R, et al. High dose rate endovascular irradiation: Tolerance of normal tissues. Endocuriether Hyperth Oncol 1994;10:167–71.

    Google Scholar 

  15. Gottdiener JS, Katin MJ, Borer JS, et al. Late effects of therapeutic mediastinal irradiation: Assessment by echocardiography and radionuclide angiography. N Engl J Med 1983;308:569–72.

    PubMed  CAS  Google Scholar 

  16. Gravanis MB, Roubin GS. Histopathological phenomena at the site of percutaneous transluminal coronary angioplasty: The problem of restenosis. Hum Pathol 1989;20:477–85.

    Article  PubMed  CAS  Google Scholar 

  17. Hehrlein C, Gollan C, Dönges K, et al. Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia. Circulation 1995;92:1570–5.

    PubMed  CAS  Google Scholar 

  18. Holmes DR, Vlietstra RE, Smith HC, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): A report from the PTCA registry of the National Heart, Lung, and Blood Institute. Am J Cardiol 1984;53:77C-81C.

    Article  PubMed  Google Scholar 

  19. Jani SK, Teirstein P, Masullo V, eds. Second Annual Symposium on Radiotherapy to Reduce Restenosis. Syllabus. La Jolla, Scripps Clinic and Research Foundation, 1998.

  20. Janicki C, Duggan DM, Coffey CW, et al. Radiation dose from a phosphorous-32 impregnated wire mesh vascular stent. Med Phys 1997;24:437–45.

    Article  PubMed  CAS  Google Scholar 

  21. King III SB. Intravascular radiation for restenosis prevention: Could it be the holy grail? Editorial. Heart 1996;76:99–100.

    Article  PubMed  Google Scholar 

  22. Koh WJ, Mayberg MR, Chambers J, et al. The potential role of external beam radiation in preventing restenosis after coronary angioplasty. Int J Radiat Oncol Biol Phys 1996;36:829–34.

    PubMed  CAS  Google Scholar 

  23. Liermann, D., Boettcher HD, Kollath J, et al. Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries. Cardiovasc Intervent Radiol 1994;17:12–6.

    Article  PubMed  CAS  Google Scholar 

  24. McReynolds RA, Gold GL, Roberts WC. Coronary artery disease after mediastinal irradiation for Hodgkins disease. Am J Med 1976;60:39–45.

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell JB. Dose, dose rate, and fractionation for vascular radiobiology. In: Waksman R, Leon B, eds. Advances in cardiovascular radiation therapy. Washington Hospital Center, 1997:50.

  26. Nath R (Chair). Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60. Med Phys (in press).

  27. Nath R, Roberts KB. Vascular irradiation for the prevention of restenosis after angioplasty: A new application for radiotherapy. Int J Radiat Oncol Biol Phys 1996;36:977–80.

    PubMed  CAS  Google Scholar 

  28. Popowski Y, Verin V, Schwager M, et al. A novel system for intracoronary β-irradiation: description and dosimetric results. Int J Radiat Oncol Biol Phys 1996;36:923–31.

    PubMed  CAS  Google Scholar 

  29. Prestwich WV, Kennett TJ, Kus FW. The dose distribution produced by a32P-coated stent. Med Phys 1995;22:313–20.

    Article  PubMed  CAS  Google Scholar 

  30. Quast U, Flühs D, Bambynek M, et al. Fast 3D-dosimetric treatment planning. The solution for precise cardiovascular β-radiotherapy. In: Waksman R, Leon B, eds. Advances in cardiovascular radiation therapy. Washington: Washington Hospital Center, 1997:8.

    Google Scholar 

  31. Quast U, Flühs D, Bambynek M, et al. Endo-vascular β-radiotherapy to prevent restenosis. Fast, precise 3D-dosimetric treatment planning and quality assurance. Radiother Oncol 1996;40:S60.

    Article  Google Scholar 

  32. Quast U, Flühs D, Kolanoski H. Clinical dosimetry with plastic scintillators — almost energy independent, direct absorbed dose reading with high resolution. Review. IAEA-SR-188/37. Radiation dosimetry: Radiation dose in radiotherapy from prescription to delivery. IAEA-TECDOC-896. Proc. IAEA, Vienna, 1996:165–9.

  33. Quast U. Endovasale Brachytherapie. In: Frommhold, H. Brachytherapie — Radioonkologische Grundlagen. Stuttgart: Thieme, (in press).

  34. Quast U, Flühs D, Bambynek M, et al. The IVUS based dosimetric treatment planning of endovascular brachytherapy — The answer to AAPM TG 60 recommendations. Int J Radiat Oncol Phys Biol (in press).

  35. Quast U. Intravascular brachytherapy — Review. Radiat Oncol (in press).

  36. Rubin P, Williams JP, Riggs PN, et al. Cellular and molecular mechanisms of radiation inhibition of restenosis. Part I: Role of the macrophage and plattelet-derived growth factor. Int J Radiat Oncol Biol Phys 1998;40:929–41.

    Article  PubMed  CAS  Google Scholar 

  37. Rubin P, Waksman R, eds. Interdisciplinary radiation medicine for nonmalignant diseases: Coronary/vascular restenosis. Special Issue. Int J Radiat Oncol Biol Phys 1996;36:763–993.

  38. Schopohl B, Liermann D, Jüling-Pohlit J, et al.192Ir endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiat Oncol Biol Phys 1996;36:835–40.

    PubMed  CAS  Google Scholar 

  39. Schwartz RS, Koval TM, Edwards WD, et al. Effect of external beam irradiation on neointimal hyperplasia after experimental coronary artery injury. J Am Coll Cardiol 1992;19:1106–13.

    PubMed  CAS  Google Scholar 

  40. Scott NA, Cipolla GD, Ross CE, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstreth injury of porcine coronary arteries. In: Waksman R, Leon B, eds. Advances in cardiovascular radiation therapy. Washington Hospital Center, 1997:46–7.

  41. Steidle B. Präventive perkutane Strahlentherapie zur Vermeidung von Intimahyperplasie nach Angioplastie mit Stentimplatation. Strahlenther Onkol 1994;170:151–4.

    PubMed  CAS  Google Scholar 

  42. Teirstein PS, Massullo V, Jani S, et al. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med 1997;336:1697–703.

    Article  PubMed  CAS  Google Scholar 

  43. Tobis JM, Mahon D, Moriucchi M. Intravascular ultrasonic imaging. Tex Heart Inst J 1990;17:181–9.

    PubMed  CAS  Google Scholar 

  44. Trott KR. Retreatment tolerance of the heart. Int J Radiat Oncol Biol Phys 1996;36:985–6.

    PubMed  CAS  Google Scholar 

  45. van der Giessen WJ, Serruys PW. Beta-particle-emitting stents radiate enthusiasm in the search for effective prevention of restenosis; Editorial. Int J Radiat Oncol Biol Phys 1994;10:2358–60.

    Google Scholar 

  46. Verin V, Urban P, Popowski Y, et al. Feasibility of intracoronary beta-irradiation to reduce restenosis after balloon angioplasty. A clinical pilot study. Circulation 1997;95:1138–44.

    PubMed  CAS  Google Scholar 

  47. von Birgelen C, Di Mario C, Serruys PW. Structural and functional characterization of an intermediate stenosis with intracoronary ultrasound and Doppler: Case of reverse Gagovian modeling. Am Heart J 1996;132:694–6.

    Article  Google Scholar 

  48. Waksman R, ed. Advances in cardiovascular radiation therapy II. Syllabus. Washington: Cardiology Research Foundation, Washington Hospital Center, 1998.

    Google Scholar 

  49. Waksman R, Crocker IR. Radiation for prevention of restenosis: Where are we? Editorial. Int J Radiat Oncol Biol Phys 1996;36:959–62.

    PubMed  CAS  Google Scholar 

  50. Waksman R, Leon MB, eds. Advances in cardiovascular radiation therapy. Syllabus. Cardiology Research Foundation, Washington Hospital Center. Washington: Cook Corporation, 1997.

    Google Scholar 

  51. Waksman R, Robinson KA, Crocker IR, et al. Intracoronary radiation before stent implantation inhibits neointima formation in stented porcine coronary arteries. Circulation 1995;92:1383–6.

    PubMed  CAS  Google Scholar 

  52. Waksman R, Serruys PW, eds. Handbook of vascular brachytherapy. London: Dunitz, 1998.

    Google Scholar 

  53. Waksman R, King III SB, Crocker IR, et al. eds. Vascular brachytherapy. Veenendaal, NL: Nucletron, 1996.

    Google Scholar 

  54. Weinberger J, Amols H, Ennis RD, et al. Intracoronary irradiation: Dose response for the prevention of restenosis in swine. Int J Radiat Oncol Biol Phys 1996;36:767–75.

    PubMed  CAS  Google Scholar 

  55. Wiedemann JG, Leavy JA, Amols H, et al. Effects of high-dose intracoronary irradiation on vasomotoric function and smooth muscle histopathology. Am J Physiol 1994;267:125–32.

    Google Scholar 

  56. Wilcox JN, Waksman R, King SB, et al. The role of the adventitia in the arterial response to angioplasty: The effect of intravascular radiation. Int J Radiat Oncol Biol Phys 1996;36:789–96.

    PubMed  CAS  Google Scholar 

  57. Xu Z, Reinstein LE, Yang G, et al. The investigation of32P wire for catheter-based endovascular irradiation. Med Phys 1997;24:1788–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Quast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quast, U., Flühs, D. & Bambynek, M. Endovascular brachytherapy — Treatment planning and radiation protection. Herz 23, 337–346 (1998). https://doi.org/10.1007/BF03043598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043598

Key Words

Schlüsselwörter

Navigation