Skip to main content
Log in

Antigen recognition and targeted delivery by the single-chain Fv

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The single-chain Fv (sFv) has proven attractive for immunotargeting, both alone and as a targeting element within sFv fusion proteins. This chapter summarizes the features of sFv proteins that have sparked this interest, starting with the conservation of Fv architecture that makes general sFv design practical. The length and composition of linkers used to bridge V domains are discussed based on the sFv literature; special emphasis is given to the (Gly4Ser)3 15-residue linker that has proven of broad utility for constructing Fv regions of antibodies and other members of the immunoglobulin superfamily. The refolding properties of sFv proteins are summarized and examples given from our laboratory. Spontaneous refolding from the fully reduced and denatured state, typified by 26-10 sFv, is contrasted with disulfide-restricted refolding, exemplified by MOPC 315 and R11D10 sFv proteins, which recover antigen binding only if their disulfides have been oxidized prior to removal of denaturant. The medical value of sFv proteins hinges on their reliability in antigen recognition and rapidity in targeted delivery. Detailed analysis of specificity and affinity of antigen binding by the 26-10 antidigoxin sFv has demonstrated very high fidelity to the binding properties of the parent 26-10 sFv. These results gave confidence to the pursuit of more complex biomedical applications of these proteins, which is indicated by our work with the R11D10 sFv for the imaging of myocardial infarctions. Diagnostic imaging and therapeutic immunotargeting by sFv present significant opportunities, particularly as a result of their pharmacokinetic properties. Intravenously administered sFv offers much faster clearance than conventional Fab fragments or intact immunoglobulin with minimal background binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porter, R. R. (1959) The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain.Biochem. J. 73, 119–126.

    PubMed  CAS  Google Scholar 

  2. Edelman, G. M. (1959) Dissociation of γ-globulin.J. Am. Chem. Soc. 81, 3155, 3156.

    Article  CAS  Google Scholar 

  3. Fleischman J. B., Porter, R. R., and Press, E. M. (1963) The arrangement of the peptide chains in γ-globulin.Biochem. J. 88, 220–228.

    PubMed  CAS  Google Scholar 

  4. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity.Nature 245, 495–497.

    Article  Google Scholar 

  5. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai., M.-S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R., Haber E., Crea, R., and Opperman, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli.Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  6. Huston, J. S., Mudgett-Hunter, M., Haber, E., and Oppermann, H. (1988) Protein engineering of single-chain Fv immunoconjugates.SIM News 38(4)(Suppl.) 11.

    Google Scholar 

  7. Huston, J. S., Mudgett-Hunter, M., Haber, E., and Oppermann, H. (1989) Engineering immunoconjugates by gene fusion: recovery of dual activity from a fusion protein comprising variable domains from antibody 26-10 and fragment B of protein A.Abstracts, 219, International Conference on Monoclonal Antibody Immunoconjugates in Cancer, San Diego, CA.

  8. Huston, J. S., Mudgett-Hunter, M., Tai, M.-S., Haber, E., and Oppermann, H. (1989) Confirmation of binding site fidelity in biosynthetic singlechain Fv and a single-chain Fv immunoconjugate.Biochemist 11(2)(Suppl.), 22.

    Google Scholar 

  9. McCartney, J., Lederman, L., Drier, E., Wu, G.-M., Cabral-Denison, N., Huston, J. S., and Opperman, H. (1990) Biosynthetic antibody binding site (BABS) proteins: binding activities of MOPC 15 VH, Fv and singlechain Fv.ICSU Short Reports 10, 114.

    Google Scholar 

  10. Shealy, D, Nedelman, M. Tai, M.-S., Huston, J. S., Berger, H., Lister-James, J., and Dean, R. T. (1990) Characterization and biodistribution of Tc-99m labeled single chain antibody Fv fragment.J. Nuclear Med. 31(5)(Suppl.), 776,777.

    Google Scholar 

  11. Tai, M.-S., Mudgett-Hunter, M., Levinson, D., Wu, G.-M., Haber, E., Opperman, H., and Huston, J. S. (1990) A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino terminal to antidigoxin single-chain Fv.Biochemistry 29, 8024–8030.

    Article  PubMed  CAS  Google Scholar 

  12. Huston, J. S., Tai, M. S., McCartney, J., Warren, F., Mudgett-Hunter, M., and Oppermann, H. (1991) Bifunctional single-chain Fv fusion proteins, inBispecific Antibodies and Targeted Cellular Cytotoxicity: Proceedings of the Second International Conference (Romet-Lemonne, J.-L., Fanger, M. W., and Segal, D. M., eds.), Fondation Nationale de Transfusion Sanguine, Les Ulis, France, pp. 201–206.

    Google Scholar 

  13. Nedelman, M. A., Shealy, D., Boutin, R., Brunt, E., Weisman, H. F., McCartney, J. E., Warren, F. D., Oppermann, H., Pang, R. H. L., and Berger, H. J. (1991) Rapid infarct imaging with a new Tc-99m antimyosin sFv fragment: evaluation in acute myocardial infarction in dogs.J. Nuclear Med. 32 (Suppl.), 1005.

    Google Scholar 

  14. Huston, J. S., Tai, M.-S., Mudgett-Hunter, M., McCartney, J., Warren, F., Haber, E., and Oppermann, H. (1991) Protein enineering of single-chain Fv analogues and fusion proteins, inMolecular Design and Modeling: Concepts and Applications, Part B (Langone, J. J., ed.),Meth. Enzymol. 203, 46–88.

  15. McCartney, J., Lederman, L., Drier, E., Cabral-Denison, N., Wu, G.-M., Batorsky, R., Huston, J. S., and Oppermann, H. (1991) Biosynthetic antibody binding sites: development of a single-chain Fv model based on antidinitrophenol IgA myeloma MOPC 315.J. Protein Chem. 10, 669–683.

    Article  PubMed  CAS  Google Scholar 

  16. Nedelman, M. A., Shealy, D. J., Boutin, R., Brunt, E., Seasholtz, J. I., Allen, I. E., Warren, F. D., Oppermann, H., Pang, R. H. L., Berger, H. J., Weisman, H. F., and McCartney, J. E. (1993) Rapid infarct imaging with a technetium-99m labeled antimyosin recombinant single-chain Fv: evaluation in a canine model of acute myocardial infarction.J. Nuclear Med. 34, 234–241.

    CAS  Google Scholar 

  17. Huston, J. S., McCartney, J., Tai., M.-S., Mottola-Hartshorn, C., Jin, D., Warren, F., Keck, P., and Oppermann, H. (1993) Medical applications of single-chain antibodies, inInternational Reviews of Immunology, Antibody Engineering. Medical Applications (Zanetti, M., ed.),10, 195–217.

  18. Huston, J. S., Keck, P., Tai, M.-S., Jin, D., McCartney, J., Stafford III, W. F., Mudgett-Hunter, M., Oppermann, H. and Haber, E. (1993) Single-chain immunotechnology of Fv analogues and fusion proteins, inImmunotechnology (Goslin, J. and Reen, D. eds.) Portland, London, in press.

    Google Scholar 

  19. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S.-M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins.Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  20. Bedzyk, W. D., Weidner, K. M., Denzin, L. K., Johnson, L. S., Hardman, K. D., Pantoliano, M. W., Ansel, E. D., and Voss, E. W., Jr. (1990) Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody.J. Biol. Chem. 265, 18,615–18,620.

    CAS  Google Scholar 

  21. Colcher, D., Bird, R., Roselli, M., Hardman, K. D., Johnson, S., Pope, S., Dodd, S. W., Pantoliano, M. W., Milenic, D. E., and Schlom, J. (1990) In vivo tumor targeting of a recombinant single-chain antigen-binding protein.J. Natl. Cancer Inst. 82, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  22. Gibbs, R. A., Posner, B. A., Filpula, D. R., Dodd, S. W., Finkelman, M. A. J., Lee, T. K., Wroble, M., Whitlow, M. and Benkovic, S. J. (1991) Construction and characterization of a single-chain catalytic antibody.Proc. Natl. Acad. Sci. USA 88, 4001–4004.

    Article  PubMed  CAS  Google Scholar 

  23. Milenic, D. E., Yokota, T., Filpula, D. R., Finkelman, M. A. J., Dodd, S. W., Wood, J. F., Whitlow, M., Snoy, P. and Schlom, J. (1991) Construction, binding properties, metabolism, and tumor targeting of a singlechain Fv derived from the pancarcinoma monoclonal antibody CC49.Cancer Res. 51, 6363–6371.

    PubMed  CAS  Google Scholar 

  24. Pantoliano, M. W., Bird, R. D., Johnson, S., Asel, E. D., Dodd, S. W., Wood, J. F., and Hardman, K. D. (1991) Conformational stability, folding and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed inEscherichia coli.Biochemistry 30, 10,117–10,125.

    Article  CAS  Google Scholar 

  25. Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms.Cancer Res. 52, 3402–3408.

    PubMed  CAS  Google Scholar 

  26. Johnson, S. and Bird, R. E. (1991) Construction of single-chain Fv derivatives of monoclonal antibodies and their production inEscherichia coli.Meth. Enzymol. 203, 88–98.

    Article  PubMed  CAS  Google Scholar 

  27. Whitlow, M. and Filpula, D. (1991) Single-chain Fv proteins and their fusion proteins.Methods: A Companion to Methods in Enzymology 2, 97–105.

    Article  CAS  Google Scholar 

  28. Chaudhary, V. K., Queen, C., Junghans, R. P., Waldmann, T. A., FitzGerald, D. J., and Pastan, I. (1989) A recombinant immunotoxin consisting of two antibody variable domains fused toPseudomonas exotoxin.Nature 339, 394–397.

    Article  PubMed  CAS  Google Scholar 

  29. Chaudhary, V. K., Batra, J. K., Gallo, M. G., Willingham, M. C., FitzGerald, D. J., and Pastan, I. (1990) A rapid method of cloning functional variable-region antibody genes inEscherichia coli as single-chain immunotoxins.Proc. Natl. Acad. Sci. USA 87, 1066–1070.

    Article  PubMed  CAS  Google Scholar 

  30. Batra, J. K., Chaudhary, V. K., FitzGerald, D., and Pastan, I. (1990) TGFα-anti-Tac(Fv)-PE40: a bifunctional toxin cytotoxic for cells with EGF or IL2 receptors.Biochem. Biophys. Res. Comm. 171, 1–6.

    Article  PubMed  CAS  Google Scholar 

  31. Batra, J. K., FitzGerald, D. J., Gately, M., Chaudhary, V. K., and Pastan, I. (1990) Anti-Tac(Fv)-PE40, a single chain antibodyPseudomonas fusion protein directed at interleukin 2 receptor bearing cells.J. Biol. Chem. 265, 15,198–15,202.

    CAS  Google Scholar 

  32. Kreitman, R. J., Chaudhary, V. K., Waldmann, T., Willingham, M. C., FitzGerald, D. J., and Pastan, I. (1990) The recombinant immunotoxin anti-Tac(Fv)-Pseudomonas exotoxin 40 is cytotoxic toward peripheral blood malignant cells from patients with adult T-cell leukemia.Proc. Natl. Acad. Sci. USA 87, 8291–8295.

    Article  PubMed  CAS  Google Scholar 

  33. Chaudhary, V. K., Gallo, M. G., FitzGerald, D. J., and Pastan, I. (1990) A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin.Proc. Natl. Acad. Sci. USA 87, 9491–9494.

    Article  PubMed  CAS  Google Scholar 

  34. Batra, J. K., FitzGerald, D. J., Chaudhary, V. K., and Pastan, I. (1991) Single-chain immunotoxins directed at the human transferrin receptor containingPseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv).Mol. Cell. Biol. 11, 2200–2205.

    PubMed  CAS  Google Scholar 

  35. Pastan, I. and FitzGerald, D. J. (1991) Recombinant toxins for cancer treatment.Science 254, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  36. Brinkmann, U., Pai, L. H., FitzGerald, D. J., Willingham, M., and Pastan, I. (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice.Proc. Natl. Acad. Sci. USA 88, 8616–8620.

    Article  PubMed  CAS  Google Scholar 

  37. Seetharam, S., Chaudhary, V. K., FitzGerald, D. J., and Pastan, I. (1991) Increased cytotoxic activity ofPseudomonas exotoxin and two chimeric toxins ending in KDEL.J. Biol. Chem. 266, 17,376–17,381.

    CAS  Google Scholar 

  38. Brinkmann, U., Buchner, J., and Pastan, I. (1992) Independent folding ofPseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections.Proc. Natl. Acad. Sci. USA 89, 3075–3079.

    Article  PubMed  CAS  Google Scholar 

  39. Bucher, J., Brinkmann, U., and Pastan, I. (1992) Renaturation of a singlechain immunotoxin facilitated by chaperones and protein disulfide isomerase.Bio/Technology 10, 682–685.

    Article  Google Scholar 

  40. Buchner, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: singlechain immunotoxins from renaturation of bacterial inclusion bodies.Anal. Biochem. 205, 263–270.

    Article  PubMed  CAS  Google Scholar 

  41. Glockshuber, R., Malia, M., Pfitzinger, I., and Plückthun, A. (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments.Biochemistry 29, 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  42. Skerra, A., Pfitzinger, I., and Plückthun, A. (1991) The functional expression of antibody Fv fragments inEscherichia coli: improved vectors and a generally applicable purification technique.Bio/Technology 9, 273–278.

    Article  PubMed  CAS  Google Scholar 

  43. Glockshuber, R., Schmidt, T., and Plückthun, A. (1992) The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression inEscherichia coli.Biochemistry 31, 1270–1279.

    Article  PubMed  CAS  Google Scholar 

  44. Pack, P. and Plückthun, A. (1992) Miniantibodies: use of amphipathic helices to produce functional, flexibly linked Fv fragments with high avidity inEscherichia coli.Biochemistry 31, 1579–1534.

    Article  PubMed  CAS  Google Scholar 

  45. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains.Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  46. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries.Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  47. Marks, J. D., Hoogenboom, H. R., Bonnert T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization: human antibodies from V-gene libraries displayed on phage.J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  48. Marks, J. D., Griffiths, A. D., Malmqvist, M., Clackson, T. P. Bye, J. B., and Winter, G. (1992) By-passing immunization: building high-affinity human antibodies by chain shuffling.Bio/Technology 10, 779–783.

    Article  PubMed  CAS  Google Scholar 

  49. Marks, J. D., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1992) Molecular evolution of proteins on filamentous phage.J. Biol. Chem. 267, 16,007–16,010.

    CAS  Google Scholar 

  50. Iverson, B. L., Iverson, S. A., Roberts, V. A., Getzoff, E. D., Tainer, J. A., Benkovic, S. J., and Lerner, R. A. (1990) Metalloantibodies.Science 249, 659–662.

    Article  PubMed  CAS  Google Scholar 

  51. Roberts, V. A., Iverson, B. L., Iverson, S. A., Benkovic, S. J., Lerner, R. A., Getzoff, E. D., and Tainer, J. A. (1990) Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket.Proc. Natl. Acad. Sci. USA 87, 6654–6658.

    Article  PubMed  CAS  Google Scholar 

  52. Condra, J. H., Sardana, V. V., Tomassini, J. E., Schlabach, A. J., Davies, M.-E., Lineberger, D. W., Gotlib, L., and Colonno, R. J. (1990) Bacterial expression of antibody fragments that block human rhinovirus infection of cultured cells.J. Biol. Chem. 265, 2292–2295.

    PubMed  CAS  Google Scholar 

  53. Davis, G. T., Bedzyk, W. D., Voss, E. W., and Jacobs, T. W. (1991) Singlechain antibody (SCA) encoding genes: one-step construction and expression in eukaryotic cells.Bio/Technology 9, 165–169.

    Article  PubMed  CAS  Google Scholar 

  54. Laroche, Y., Demaeyer, M., Stassen, J.-M., Gansemans, Y., Demarsin, E., Matthyssens, G., Collen, D., and Holvoet, P. (1991) Characterization of a recombinant single-chain molecule comprising the variable domains of a monoclonal antibody specific for human fibrin fragment D-dimer.J. Biol. Chem. 266, 16,343–16,349.

    CAS  Google Scholar 

  55. Holvoet, P., Laroche, Y., Lijnen, H. R., Van Cauwnberge, R., Demarsin, E., Brouwers, E., Matthyssens, G., and Collen, D. (1991) Characterization of a chimeric plasminogen activator consisting of a single-chain Fv fragment derived from a fibrin fragment D-dimer-specific antibody and a truncated single-chain urokinase.J. Biol. Chem. 266, 19,717–19,724.

    CAS  Google Scholar 

  56. Anand, N. N., Mandal, S., MacKenzie, C. R., Saowska, J., Siurskjold., B., Young, N. M., Bundle, D. R., and Narang, S. A. (1991) Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for aSalmonella serotype B O-antigen.J. Biol. Chem. 266, 21,874–21,879.

    CAS  Google Scholar 

  57. Fuchs, P., Breitlin, F., Dübel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface ofEscherichia coli: fusion to a peptidoglycan associated lipoprotein.Bio/Technology 9, 1369–1372.

    Article  PubMed  CAS  Google Scholar 

  58. Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., and Little, M. (1991) A surface expression vector for antibody screening.Gene 104, 147–153.

    Article  PubMed  CAS  Google Scholar 

  59. Dübel, S., Breitling, F., Seehaus, T., and Little, M. (1992) Generation of a human IgM expression library inE.coli. Meth. Mol. Cell. Biol. 3, 47–52.

    Google Scholar 

  60. Seehaus, T., Breitling, F., Dübel, S., Klewinhaus, I., and Little, M. (1992) A vector for the removal of deletion mutants from antibody libraries.Gene 114, 235–237.

    Article  PubMed  CAS  Google Scholar 

  61. Takkinen, K., Laukkanen, M.-L., Sizmann, D., Alfthan, K., Immonen, T., Vanne, L., Kaartinen, M., Knowles, J. K. C., and Teeri, T. T. (1991) An active single-chain antibody containing a cellulase linker domain is secreted byEscherichia coli.Prot. Eng. 4, 837–841.

    Article  CAS  Google Scholar 

  62. Dreher, M. L., Gherardi, E., Skerra, A., and Milstein, C. (1991) Colony assays for antibody fragments expressed in bacteria.J. Immunol. Meth. 139, 197–205.

    Article  CAS  Google Scholar 

  63. Gherardi, E. and Milstein, C. (1992) Original and artificial antibodies.Nature 357, 201,202.

    Article  Google Scholar 

  64. Weidner, K. M. and Voss, E. Jr. (1991) Immunological characterization of Xenogenic anti-metatype antibodies.J. Biol. Chem. 266, 2513–2519.

    PubMed  CAS  Google Scholar 

  65. Cheadle, C., Hook, L. E., Givol, D., and Ricca, G. A. (1992) Cloning and expression of the variable regions of mouse myeloma protein MOPC315 inE. coli: recovery of active Fv fragments.Mol. Immunol. 29, 21–30.

    Article  PubMed  CAS  Google Scholar 

  66. Kohl, J., Rüker, F., Himmler, G., Razazzi, E., and Katinger, H. (1991) Cloning and expression of an HIV-1 specific single-chain Fv region fused toEscherichi coli alkaline phosphatase.Ann. NY Acad. Sci. USA 646, 106–114.

    Article  CAS  Google Scholar 

  67. Bregegere, F. and Bedouelle, H. (1992) Expression, export and purification of antibody fragments fused to the maltose binding protein ofEscherichia coli. Comptes Rendus de l’Academie des Sciences, Series III-Sciences de la Vie314, 527–532.

    CAS  Google Scholar 

  68. Mottez, E., Jaulin, C., Godeau, F., Choppin, J, Levy, J.-P., and Kourilsky, P. (1991) A single-chain murine class I major transplantation antigen.Eur. J. Immunol. 21, 467–471.

    Article  PubMed  CAS  Google Scholar 

  69. Traunecker, A., Lanzavecchia, A., and Karjalainen, K. (1991) Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells.EMBO J. 10, 3655–3659.

    PubMed  CAS  Google Scholar 

  70. Novotny, J., Ganju, R. K., Smiley, S. T., Hussey, R. E., Luther, M. A., Recny, M. A., Siliciano, R. F., and Reinherz, E. (1991) A soluble, singlechain T-cell receptor fragment endowed with antigen-combining properties.Proc. Natl. Acad. Sci. USA 88, 8646–8650.

    Article  PubMed  CAS  Google Scholar 

  71. Hoo, W. F. S., Lacy, M. J., Denzin, L. K., Voss, E. W., Jr. Hardman, K. D., and Kranz, D. M. (1992) Characterization of a single-chain T-cell receptor expressed inEscherichia coli.Proc. Natl. Acad. Sci. USA 89, 4759–4763.

    Article  PubMed  CAS  Google Scholar 

  72. Ward, E. S. (1992) Secretion of T-cell receptor fragments from recombinantEscherichia coli cells.J. Mol. Biol. 224, 885–890.

    Article  PubMed  CAS  Google Scholar 

  73. Wels, W., Harwerth, I.-M., Zwickl, M., Hardman, N., Groner, B., and Hynes, N. E. (1992) Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the humanerbB-2 receptor.Bio/Technology 10, 1128–1132.

    Article  PubMed  CAS  Google Scholar 

  74. Inbar, D., Hochman, J., and Givol, D. (1972) Localization of antibody combining sites within the variable portions of heavy and light chains.Proc. Natl. Acad. Sci. USA 69, 2659–2662.

    Article  PubMed  CAS  Google Scholar 

  75. Givol, D. (1991) The minimal antigen-binding fragment of antibodies—Fv fragment.Mol. Immunol. 28, 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  76. Riechmann, L., Foote, J., and Winter, G. (1988) Expression of an antibody Fv fragment in myeloma cells.J. Mol. Biol. 203, 825–828.

    Article  PubMed  CAS  Google Scholar 

  77. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment inEscherichia coli.Science 240, 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  78. Field, H., Yarranton, G. T., and Rees, A. R. (1988) A functional recombinant immunoglobulin variable domain from polypeptides produced inEscherichia coli, inVaccines 88 (Ginsberg, H., Brown, F., Lerner, R. A., and Channock, R. M., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 29–34.

    Google Scholar 

  79. Plückthun, A. and Skerra, A. (1989) Expression of functional antibody Fv and Fab fragments inEscherichia coli.Meth. Enzymol. 178 497–515.

    Article  PubMed  Google Scholar 

  80. Field, H., Yarranton, G. T., and Rees, A. R. (1989) Expression of mouse immunoglobulin light and heavy chain variable regions inEscherichia coli and reconstitution of antigen-binding activity,Protein Eng. 3, 641–647.

    Article  Google Scholar 

  81. Anthony, J., Near, R., Wong, S.-L., Iida, E., Ernst, E., Wittekind, M., Haber, E., and Ng, S.-C. (1992) Production of stable anti-digoxin Fv inEscherichia coli.Mol. Immunol. 29, 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  82. Cumber, A. J., Ward, E. S., Winter, G., Parnell, G. D., and Wawrzynczak, E. J. (1992) Comparative stabilities in vitro and in vivo of a recombinant mouse antibody FvCys fragment and a bisFvCys conjugate.J. Immunol. 149, 120–126.

    PubMed  CAS  Google Scholar 

  83. King, D. J., Mountain, A., Adair, J. R., Owens, R. J., Harvey, A., Weir, N., Proudfoot, K. A., Phipps, A., Lawson, A., Rhind, S. K., Pedley, B., Boden, J., Boden, R., Begent, R. H. J., and Yarranton, G. T. (1992) Tumor localization of engineered antibody fragments.Antibody Immunoconj. Radiopharmaceut.,5, 159–170.

    CAS  Google Scholar 

  84. Ornatowska, M. and Glasel, J. A. (1991) Direct production of Fv-fragments from a family of monoclonal IgGs. Papain diestion.Mol. Immunol. 28, 383–391.

    Article  PubMed  CAS  Google Scholar 

  85. Sharon, J. and Givol, D. (1976) Preparation of Fv fragment from the mouse myeloma XRPC-25 immunoglobulin possessing anti-dinitrophenyl activity.Biochemistry 15, 1591–1594.

    Article  PubMed  CAS  Google Scholar 

  86. Lin, L.-C. and Putnam, F. W. (1978) Cold pepsin digestion: a novel method to produce the Fv fragment from human immunoglobulin M.Proc. Natl. Acad. Sci. USA 75, 2649–2653.

    Article  PubMed  CAS  Google Scholar 

  87. Sen, J. and Beychok, S. (1986) Proteolytic dissection of a hapten binding site.Proteins: Struct. Funct. Genetics 1, 256–262.

    Article  CAS  Google Scholar 

  88. Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerley, R. P., Saul, F. (1973) Three-dimensional structure of the Fab-fragment of a human immunoglobulin at 2.8. Å resolution.Proc. Natl. Acad. Sci. USA 70, 3305–3310.

    Article  PubMed  CAS  Google Scholar 

  89. Amzel, L. M. and Poljak R. J. (1979) Three-dimensional structure of immunoglobulins.Ann. Rev. Biochem. 48, 961–997.

    Article  PubMed  CAS  Google Scholar 

  90. Greer, J. (1991) Comparative modeling of homologous proteins.Meth. Enzymol. 202, 239–252.

    Article  PubMed  CAS  Google Scholar 

  91. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Roders, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. J. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures.J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  92. Saul, F. A., Amzel, L. M., and Poljak, R. J. (1978) Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin New at 2.0 Å resolution.J. Biol. Chem. 253, 585–597.

    PubMed  CAS  Google Scholar 

  93. Marquart, M., Deisenhofer, J., Huber, R., and Palm, W. (1980) Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution.J. Mol. Biol. 141, 369–391.

    Article  PubMed  CAS  Google Scholar 

  94. Satow, Y., Cohen, G., Padlan, E. A., and Davies, D. R. (1986) Phosphocholine binding immunoglobulin Fab McPC 603, an x-ray diffraction study at 2.7 Å.J. Mol. Biol. 190, 593–604.

    Article  PubMed  CAS  Google Scholar 

  95. Fischmann, T. O., Bentley, G. A., Bhat, T. N., Boulot, G., Mariuzza, R. A., Phillips, S. E. V., Tello, D., and Poljak, R. J. (1991) Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-Å resolution.J. Biol. Chem. 266, 12,915–12,920.

    CAS  Google Scholar 

  96. Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C., and Davies, D. R. (1987) Three-dimensional structure of an antibody-antigen complex.Proc. Natl. Acad. Sci. USA 84, 8075–8079.

    Article  PubMed  CAS  Google Scholar 

  97. Padlan, E. A., Silverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J., and Davies, D. R. (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex.Proc. Natl. Acad. Sci. USA 86, 5938–5942.

    Article  PubMed  CAS  Google Scholar 

  98. Suh, S. W., Bhat, T. N., Navia, M. A., Cohen, G. H., Rao, D. N., Rudikoff, S., and Davies, D. R. (1986) The galactan-binding immunoglobulin Fab J539: an X-ray diffraction study at 2.6-Å resolution.Proteins Struct. Funct. Genetics 1, 74–80.

    Article  CAS  Google Scholar 

  99. Lascombe, M.-B., Alzari, P. M., Boulot, G., Saludjian, P., Touard, P., Berek, C., Haba, S., Rosen, E. M., Nisonoff, A., and Poljak, R. J. (1989) Threedimensional structure of Fab R19.9, a monoclonal murine antibody specific for thep-azobenzenearsonate group.Proc. Natl. Acad. Sci. USA 86, 607–611.

    Article  PubMed  CAS  Google Scholar 

  100. Herron, J. N., He, X., Mason, M. L., Voss, E. W., Jr., and Edmundson, A. B. (1989) Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol.Proteins Struct. Funct. Genetics 5, 271–280.

    Article  CAS  Google Scholar 

  101. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S. and Foeller, C. (1991)Sequences of Proteins of Immunological Interest, 5th ed., U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Publication No. 91-3242.

  102. Novotny, J. and Haber, E. (1985) Structural invariants of antigen binding: comparison of immunoglobulin VL-VH and VL-VL domain dimers.Proc. Natl. Acad. Sci. USA 82, 4592–4596.

    Article  PubMed  CAS  Google Scholar 

  103. Chothia, C., Novotny, J., Bruccoleri, R., and Karplus, M. (1985) Domain association in immunoglobulin molecules. I. The packing of variable domains.J. Mol. Biol. 186, 651–662.

    Article  PubMed  CAS  Google Scholar 

  104. Rudikoff, S. and Pumphrey, J. G. (1986) Functional antibody lacking a varaible-region disulfide bridge.Proc. Natl. Acad. Sci. USA 83, 7875–7878.

    Article  PubMed  CAS  Google Scholar 

  105. Khaw, B. A., Fallon, J. T., Strauss, H. W., and Haber, E. (1980) Myocardial infarct imaging of antibodies to canine cardiac myosin with indium-111-diethylenetriamine pentaacetic acid.Science 209, 295–297.

    Article  PubMed  CAS  Google Scholar 

  106. Khaw, B. A., Mattis, J. A., Melincoff, G., Strauss, H. W., Gold, H. K. and Haber, E. (1984) Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction.Hybridoma 3, 11–23.

    Article  PubMed  CAS  Google Scholar 

  107. Huston, J. S., Cohen, C., Maratea, D., Fields, F., Tai, M.-S., Cabral-Denison, N., Juffras, R., Rueger, D. C., Ride, R. J., Oppermann, H., Keck, P., and Baid, L. G. (1992) Multisite association by recombinant proteins can enhance binding selectivity: preferential removal of immune complexes from serum by immobilized truncated FB analogues of the B domain from staphylococcal protein A.Biophysical J. 62, 87–91.

    Article  CAS  Google Scholar 

  108. Freund, C., Ross, A., Guth, B., Plückthun, A., and Holak, T. A. (1993) Characterization of the linker-peptide of the single-chain Fv fragment of an antibody by NMR spectroscopy.FEBS Letts. 320, 97–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huston, J.S., Tai, MS., McCartney, J. et al. Antigen recognition and targeted delivery by the single-chain Fv. Cell Biophysics 22, 189–224 (1993). https://doi.org/10.1007/BF03033874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033874

Index Entries

Navigation