Skip to main content
Log in

Trace element inhibition of carcinogenesis and angiogenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In separate experimental models the effects of selenium, zinc, potassium, and copper on angiogenesis and carcinogenesis are compared. Inhibitory effects of Se as Na2SeO3 and of chloride salts of K and Zn, but not of Cu, on vascularization induced by amelanotic tumor implants (A Mel-4B32) in the Syrian hamster cheek pouch membrane are reported. In an earlier study the induction of new vasculature, angiogenesis, in control chambers implanted with A Mel-4B32 was initially observed on day 4 after implant. Addition of 5, 10, and 50 μg Se at the time of tumor implant delayed the initial capillary proliferation to days 7, 9, 10, respectively (Cancer Lett. 9, 353, 1980). Similarly, in this report addition of 50 μg Zn or 50 μg K delayed angiogenesis to days 7.and 6, respectively. By contrast, addition of 50 μg Cu caused severe inflammation and necrosis of the membrane before capillary proliferation could be observed and the animals had to be sacrificed.

In an earlier study we reported the colon tumor incidence in 1,2-dimethylhydrazine (20 mg DMG/kg body weight for 20 weeks) -treated Sprague Dawley rats was reduced from 87 to 40% by a 4 ppm Se (as Na2SeO3) supplement in the drinking water (Cancer Lett. 2, 133, 1977). In this study rats were treated with the same dose of carcinogen, but were sacrificed 14 weeks following the last DMH injection. Drinking water supplements with 0.02% Zn (as ZnCl2), 0.5% K (as KCl), or 0.01% Cu (as CuCl2) were provided concurrently with the carcinogen and were continued until death or sacrifice. The colon tumor incidence was 18/20 in the DMH control and was reduced to 16/20 by supplemental Zn, reduced to 12/20 by supplemental K, and was unchanged (18/20) by Cu. The tumor incidences in the small intestine and Zymbal gland were all reduced by Zn, K, and Cu supplements compared with the DMH control. The hamster cheek pouch technique may provide a prescreen for potential inhibitors of chemical carcinogenesis in other experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Goodall, A. G. Sanders, and P. Shubik,J. Natl. Cancerlnst. 35, 497 (1965).

    CAS  Google Scholar 

  2. M. Greenblatt and P. Shubik,J. Natl. Cancer Inst. 41, 111 (1968).

    PubMed  CAS  Google Scholar 

  3. J. Folkman, E. Merler, and C. Abernathy,J. Exp. Med. 133, 275 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. R. Langer, H. Conn J.Vacanti, C. Haudenschild, and J. Folkman,Proc. Natl. Acad. Sci. USA. 77, 4331 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. S. Taylor and J. Fotkman,Nature 297, 307 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. M. M. Jacobs, P. Shubik, and R. Feldman,Cancer Lett. 9, 353 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. L. F. Chasseaud,Adv. Cancer Res. 29, 175 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. P. R. Harbach and J. A. Swenberg,Carcinogenesis 2, 575 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. L. W. Wattenberg,Adv. Cancer Res. 26, 197 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. M. Greenblatt, K. V. Choudari, A. G. Sanders, and P. Shubik,Microvasc. Res. 1, 420 (1969).

    Article  PubMed  CAS  Google Scholar 

  11. M. M. Jacobs and A. C. Griffin, eds.,Inhibition of Tumor Induction and Development, Plenum, New York, 1981, pp. 169–188.

    Google Scholar 

  12. A. Tannebaum and H. Silverstone, eds.,Cancer, Butterworth, London, 1957, pp. 306–334.

    Google Scholar 

  13. J. R. Duncan and I. E. Dreosti,J. Natl. Cancer lnst. 55, 195 (1975).

    CAS  Google Scholar 

  14. D. W. Poswillo and R. Cohen,Nature 231, 447 (1971).

    Article  PubMed  CAS  Google Scholar 

  15. G. Fare,Biochem. J. 91, 473 (1964).

    PubMed  CAS  Google Scholar 

  16. G. Fare and J. S. Howell,Cancer Res. 24, 1279 (1964).

    PubMed  CAS  Google Scholar 

  17. Y. Yamane and K. Sakai,Chem. Pharm. Bull. (Tokyo) 22, 1125 (1974).

    Google Scholar 

  18. Y. Yamane, K. Sakai, I. Uchiyama, M. Tabata, N. Taga, and A. Hanaki,Chem. Pharm. Bull. (Tokyo) 17, 2488 (1969).

    CAS  Google Scholar 

  19. M. Kanisawa and H. A. Schroeder,Cancer Res. 27, 1192 (1967).

    PubMed  CAS  Google Scholar 

  20. M. Kanisawa and H. A. Schroeder,Cancer Res. 29, 892 (1969).

    PubMed  CAS  Google Scholar 

  21. J. Durlach, P. Larvor, Y. Augusti, and E. Albengres-Moineau,Concours Med. 95, 6296 (1973).

    Google Scholar 

  22. G. P. O’Hara, D. E. Mann, and R. F. Gautieri,J. Pharm. Sci. 60, 473 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. N. Kobayashi, H. Katsuki, and Y. Yamane,Gann 61, 239 (1970).

    PubMed  CAS  Google Scholar 

  24. T. Gorski,Neoplasia 15, 267 (1968).

    CAS  Google Scholar 

  25. S.A. Gunn, T. C. Gould, and W. A. Anderson,J. Natl. Cancerlnst. 31, 745 (1963).

    CAS  Google Scholar 

  26. S.A. Gunn, T. C. Gould, and W. A. Anderson,Proc. Soc. Exp. Biol. Med. 115, 653 (1963).

    Google Scholar 

  27. F. W. Sunderman, T. J. Lau, and L. J. Cralley,Cancer Res. 34, 92 (1974).

    PubMed  CAS  Google Scholar 

  28. M. M. Jacobs, B. Jansson, and A. C. Griffin,Cancer Lett. 2, 133 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. P. M. Gullino,J. Natl. Cancer. Inst. 61, 639 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, M.M. Trace element inhibition of carcinogenesis and angiogenesis. Biol Trace Elem Res 5, 375–381 (1983). https://doi.org/10.1007/BF02987221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987221

Index Entries

Navigation