Skip to main content

Advertisement

Log in

Effect of hyperthermia on selective expression of HL-60 heat shock proteins

  • Original Articles
  • Published:
Medical Oncology and Tumor Pharmacotherapy Aims and scope Submit manuscript

Abstract

Hyperthermia is used experimentally to treat human malignancy. The effect of heat delivery rate and thermotolerance on the expression of heat shock proteins (hsp) by the human HL-60 cell line before and after differentiation was studied. This leukemia cell synthesized multiple hsp in response to elevated temperatures. The most obvious and consistent proteins were within the highly conserved stress-inducible family of polypeptides hsp70 which resolved as a hsp69/72 doublet. Cells which were made thermotolerant by gradual heating selectively failed to express the hsp70 doublet even though other hsp were synthesized. Mature HL-60 cells induced to differentiate by incubation in retinoic acid expressed a full complement of hsp when exposed to immediate heat, but there was selective deletion of hsp70 with gradual hyperthermia. This model for selective induction of hsp confirms that synthesis of hsp and thermotolerance can be dissociated in the HL-60. It suggests that the hsp70 does not play an obligatory role in thermotolerance of this human leukemia cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins S J, Gallo R C, Gallagher R E: Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture.Nature 270, 347 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F, Gallo R: Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia.Blood 54, 713 (1979).

    PubMed  CAS  Google Scholar 

  3. Dalton W T, Ahearn M J, McCredie K B, Freireich E J, Stass S A, Trujillo J M: HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3.Blood 71, 242 (1988).

    PubMed  Google Scholar 

  4. Breitman T R, Selonick S E, Collins S J: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid.Proc natn Acad Sci USA 77, 2936 (1980).

    Article  CAS  Google Scholar 

  5. Fischkoff S A, Pollak A, Gleich G J, Testa J R, Misawa S, Reber T J: Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60.J exp Med 160, 179 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. Collins S J: The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression.Blood 70, 1233 (1987).

    PubMed  CAS  Google Scholar 

  7. Guffy M M, Rosenberger J A, Simon I, Burns C P: Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells.Cancer Res 42, 3625 (1982).

    PubMed  CAS  Google Scholar 

  8. Burns C P, Spector A A: Membrane fatty acid modification in tumor cells: a potential therapeutic adjunct.Lipids 22, 178 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. Spector A A, Burns C P: Biological and therapeutic potential of membrane lipid modification in tumors.Cancer Res 47, 529 (1987).

    Google Scholar 

  10. Lindquist S: The heat-shock response.Ann Rev Biochem 55, 1151 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. Chappell T G, Welch W J, Schlossman D M, Palter K B, Schlesinger M J, Rothman J E: Uncoating ATPase is a member of the 70 kilodalton family of stress proteins.Cell 45, 3 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. Chirico W J, Waters M G, Blobel G: 70K heat shock related proteins stimulate protein translocation into microsomes.Nature 332, 805 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. Deshaies R J, Koch B D, Werner-Washburne M, Craig E A, Schekman R: A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides.Nature 332, 800 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. Burns C P, Lambert B J, Haugstad B N, Guffy M M: Influence of rate of heating on thermosensitivity of L1210 leukemia: membrane lipids andM r 70,000 heat shock protein.Cancer Res 46, 1882 (1986).

    PubMed  CAS  Google Scholar 

  15. Supino R, Bardella L, Gibelli N, Cairo G and Schiaffonati L: Interaction of heat with chemotherapyin vitro: effect on cell viability and protein synthesis in human and murine cell lines.Tumori 73, 109 (1987).

    PubMed  CAS  Google Scholar 

  16. Singh M K and Yu J: Accumulation of a heat shock-like protein during differentiation of human erythroid cell line K562.Nature 309, 631 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. Eid N S, Kravath R E, Lanks K W: Heat-shock protein synthesis by human polymorphonuclear cells.J exp Med 165, 1448 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Polla B S, Healy A M, Wojno W C, Krane S M: Hormone lα,25-dihydroxyvitamin D3 modulates heat shock response in monocytes.Am J Physiol 252, C640 (1987).

    PubMed  CAS  Google Scholar 

  19. Kaczmarek L, Calabretta B, Kao H-T, Heintz N, Nevins J, Baserga R: Control of hsp 70 RNA levels in human lymphocytes.J Cell Biol 104, 183 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. Yen A, Van Sant R, Harvey J, Fishbaugh J: Myeloid differentiation-inducing factors produced by pokeweed mitogen-treated normal G1/0 lymphocytes but not chronic lymphocytic leukemia cells.Cancer Res 45, 4060 (1985).

    PubMed  CAS  Google Scholar 

  21. Lowry O H, Rosebrough N J, Farr A L, Randall R J: Protein measurement with the Folin phenol reagent.J biol Chem 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  22. O’Farrell P H: High resolution two-dimensional electrophoresis of proteins.J biol Chem 250, 4007 (1975).

    PubMed  CAS  Google Scholar 

  23. Dunbar B S:Two-dimensional Electrophoresis and Immunological Techniques. New York, Plenum Press (1987).

    Google Scholar 

  24. Dunker A K, Rueckert R R: Observations on molecular weight determinations on polyacrylamide gel.J biol Chem 244, 5074 (1969).

    PubMed  CAS  Google Scholar 

  25. Milarski K L, Morimoto R I: Expression of human HSP 70 during the synthetic phase of the cell cycle.Proc natn Acad Sci USA 83, 9517 (1986).

    Article  CAS  Google Scholar 

  26. Herman T S, Gerner E W, Magun B E, Stickney D, Sweets C C, White D M: Rate of heating as a determinant of hyperthermic cytotoxicity.Cancer Res 41, 3519 (1981).

    PubMed  CAS  Google Scholar 

  27. Tomasovic S P, Steck P A, Heitzman D: Heat-stress proteins and thermal resistance in rat mammary tumor cells.Radiat Res 95, 399 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. Tomasovic S P, Sinha A, Steck P A: Heat transient related changes in stress-protein synthesis.Radiat Res 102, 336 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. Widelitz R B, Magun B E, Gerner E W: Dissociation of 68,000 Mr heat shock protein synthesis from thermotolerance expression in rat fibroblasts.Radiat Res 99, 433 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. Carper S W, Duffy J J, Gerner E W: Heat shock proteins in thermotolerance and other cellular processes.Cancer Res 47, 5249 (1987).

    PubMed  CAS  Google Scholar 

  31. Bensaude O, Babinet C, Morange M, Jacob F: Heat shock proteins, first major products of zygotic gene activity in mouse embryo.Nature 305, 331 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. Van der Ploeg L H T, Giannini S H, Cantor C R: Heat shock genes: regulatory role for differentiation in parasitic protozoa.Science 228, 1443 (1985).

    Article  PubMed  Google Scholar 

  33. Dura J-M: Stage dependent synthesis of heat shock induced proteins in early embryos ofDrosophila melanogaster.Molec Gen Genet 184, 381 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. Sirotkin K, Davidson, N: Developmentally regulated transcription fromDrosophila melanogaster chromosomal site 67B.Devel Biol 89, 196 (1982).

    Article  CAS  Google Scholar 

  35. Kurtz S, Lindquist S: Changing patterns of gene expression during sporulation in yeast.Proc natn Acad Sci USA 81, 7323 (1984).

    Article  CAS  Google Scholar 

  36. Roccheri M C, DiBernardo M G, Giudice G: Synthesis of heat-shock proteins in developing sea urchins.Devel Biol 83, 173 (1981).

    Article  CAS  Google Scholar 

  37. Morange M, Diu A, Bensaude O, Babinet C: Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells.Molec cell Biol 4, 730 (1984).

    PubMed  CAS  Google Scholar 

  38. Wu B J, Morimoto R I: Transcription of the humanhsp 70 gene is induced by serum stimulation.Proc natn Acad Sci USA 82, 6070 (1985).

    Article  CAS  Google Scholar 

  39. Kao H-T, Capasso O, Heintz N, Nevins J R: Cell cycle control of the human HSP 70 gene: implications for the role of a cellular ElA-like function.Molec cell Biol 5, 628 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, C.P., Wagner, B.A. & North, J.A. Effect of hyperthermia on selective expression of HL-60 heat shock proteins. Med. Oncol. & Tumor Pharmacother. 6, 245–253 (1989). https://doi.org/10.1007/BF02985156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985156

Key words

Navigation