Skip to main content
Log in

Donepezil, tacrine and α-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB)

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the present study, we have characterized the choline transport system and examined the influence of various amine drugs on the choline transporter using a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB)in vitro. The cell-to-medium (C/M) ratio of [3H]choline in TR-BBB cells increased time-dependently. The initial uptake rate of [3H]choline was concentration-dependent with a Michaelis-Menten value, Km, of 26.2 ± 2.7 μM. The [3H]choline uptake into TR-BBB was Na+-independent, but was membrane potential-dependent. The [3H]choline uptake was susceptible to inhibition by hemicholinium-3, and tetraethy-lammonium (TEA), which are organic cation transporter substrates. Also, the uptake of [3H]choline was competitively inhibited withK i values of 274 μM, 251 μM and 180 μM in the presence of donepezil hydrochloride, tacrine and α-phenyl-n-tert-butyl nitrone (PBN), respectively. These characteristics of choline transport are consistent with those of the organic cation transporter (OCT). OCT2 mRNA was expressed in TR-BBB cells, while the expression of OCT3 or choline transporter (CHT) was not detected. Accordingly, these results suggest that OCT2 is a candidate for choline transport at the BBB and may influence the BBB permeability of amine drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P., and Crooks, P. A., Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter.J. Pharm. Exp. Ther., 304, 1268–1274 (2003).

    Article  CAS  Google Scholar 

  • Allen, D. D. and Smith, Q. R., Characterization of the blood-brain barrier choline transporter using thein situ rat brain perfusion technique.J. Neurochem., 76, 1032–1041 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Cornford, E. M., Braun, L. D., and Oldendorf, W. H., Carrier mediated blood-brain barrier transport of choline and certain choline analogs.J. Neurochem., 30, 299–308 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I., Choline metabolism in the central nervous system: the role of choline transport from plasma to brain.Neurology, 20, 382 (1970).

    PubMed  CAS  Google Scholar 

  • Friedrich, A., George, R. L, Bridges, C. C., Prasad, P. D., and Ganapathy, V., Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4).Biochim. Biophys. Acta, 1512, 299–307 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Galea, E. and Estrada, C., Ouabain-sensitive choline transport system in capillaries isolated from bovine brain.J. Neurochem., 59, 936–941 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Gomez, C., Martin, C., Galea, E., and Estrada, C., Direct cytotoxicity of ethylcholine mustard aziridinium in cerebral microvascular endothelial cells.J. Neurochem., 60, 1534–1539 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer, Teuber, I., Karbach, U., Quester, S., Baumann, C., Lang, F., Busch, A. E., and Koepsell, H., Cloning and characterization of two human polyspecific organic cation transporters.DNA Cell Biol., 16, 871–881 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H., Drug excretion mediated by a new prototype of polyspecific transporter.Nature, 372, 549–552 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E., Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells.J. Biol. Chem., 272, 10408–10413 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Grundemann, D., Koster, S., Kiefer, N., Breidert, T., Engelhardt, M., Spitzenberger, F., Obermuller, N., and Schomig, E., Transport of monoamine transmitters by the organic cation transporter type 2, OCT2.J. Biol. Chem., 273, 30915–30920 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hartvig, P., Askmark, H., Aquilonius, S. M., Wiklund, L., and Lindstrom, B., Clinical pharmacokinetics of intravenous and oral 9-amino-1,2,3,4-tetrahydroacridine, tacrine.Eur. J. Clin. Pharmacol., 38, 259–263 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, K., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M., and Terasaki, T., mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting.J. Drug Target, 8, 357–370 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Johansson, M., Hellstrom-Lindahl, E., and Nordberg, A., Steady-state pharmacokinetics of tacrine in long-term treatment of Alzheimer patients.Dementia, 7, 111–117 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y. S., Terasaki, T., Ohnishi, T., and Tsuji, A.,In vivo andin vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier.J. Pharmacobio-Dyn., 13, 353–360 (1990).

    PubMed  CAS  Google Scholar 

  • Kekuda, R., Pasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Gaapathy, V., Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta.J. Biol. Chem., 273, 15971–15979 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Klein, J., Gonzalez, R. K., Koppen, A., and Loffelholz, K., Free choline and choline metabolites in rat brain and body fluids: Sensitive determination and implications for choline supply to the brain.Neurochem. Int., 22, 293–300 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Knecht, K. T. and Mason, R. P.,In vivo spin trapping of xenobiotic free radical metabolites.Arch. Biochem. Biophys., 303, 185–194 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Koepsell, H., Gorboulev, V., and Amdt, P., Molecular pharmacology of organic cation transporters in kidney.J. Membr. Biol., 167, 103–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  • MaNally, W. P., Pool, W. F., Sinz, M. W., Dehart, P., Ortwine, D. F., Huang, C. C., Chang, T., and Woolf, T. F., Distribution of tacrine and metabolites in rat brain and plasma after single-and multiple-dose regimens; Evidence for accumulation of tacrine in brain tissue.Drug Metab. Dispos., 24, 628–633 (1996).

    Google Scholar 

  • Matsui, K., Mishima, M., Nagai, Y., Yuzuriha, T., and Yoshimura, T., Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to rat.Drug Metab. Dispos., 27, 1406–1414 (1999).

    PubMed  CAS  Google Scholar 

  • Metting, T. L., Burgio, D. E., Terry, A. V., Beach, J. W., Mccurdy, C. R., and Allen, D. D., Inhibition of brain choline uptake by isoarecolone and lobeline derivatives: implications for potential vector-mediated brain drug delivery.Neurosci. Lett., 258, 25–28 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Takanaga, H., Ohtsuki, S., Deguchi, T., Kang, Y. S., Hosoya, K., and Terasaki, T., Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells.J. Cereb. Blood Flow Metabol., 23, 432–440 (2003).

    Article  CAS  Google Scholar 

  • Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., and Katsura, I., Identification and characterization of the highaffinity choline transporter.Nat. Neurosci., 3, 120–125 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Introduction to the blood-brain barrier: Methodology, biology and pathology, Cambridge University Press, Cambridge, pp. 1–486, (1998).

    Google Scholar 

  • Pardridge, W. M., Blood-brain barrier drug targeting: the future of brain drug development.Mol. Intervent, 3, 90–105 (2003).

    Article  CAS  Google Scholar 

  • Pardridge, W. M., Holy grails andin vitro blood-brain barrier models.Drug Discov. Today, 9, 258 (2004).

    Article  PubMed  Google Scholar 

  • Pardridge, W. M. and Oldendorf, W. H., Transport of metabolic substrates through the blood-brain barrier.J. Neurochem., 28, 5–12 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Parfitt, K. and Martindale, W., Martindale: the complete drug reference. 32nd ed. Pharmaceutical Press, London, pp. 1391–1392 (1999).

    Google Scholar 

  • Rho, J. P. and Lipson, L. G., Focus on donepezil: A reversible acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease.Formulary, 32, 677–678 (1997).

    CAS  Google Scholar 

  • Saito, H., Masuda, S., and Inui, K., Cloning and functional characterization of a novel rat organic anion transporter mediating basolateral uptake of methotrexate in the kidney.J. Biol. Chem., 271, 20719–20725 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sawada, N., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y., Choline uptake by mouse brain capillary endothelial cells in culture.J. Pharm. Pharmacol., 51, 847–852 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sweet, D. H., Miller, D. S., and Pritchard, J. B., Ventricular choline transport.J. Biol. Chem., 276, 41611–41619 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I. and Tsuji, A., Transporter-mediated permeation of drugs across the blood-brain barrier.J. Pharm. Sci., 89, 1371–1388 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Telting-Diaz, M. and Lunte, C. E., Distribution of tacrine across the blood-brain barrier in awake, freely moving rats usingin vivo microdialysis sampling.Pharm. Res., 10, 44–48 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., and Hosoya, K., New approaches toin vitro models of blood-brain barrier drug transport.Drug Discov. Today, 20, 944–954 (2003).

    Article  CAS  Google Scholar 

  • Tiseo, P. J., Rogers, S. L., and Friedhoff, L. T., Pharmacokinetic and pharmacodynamic profile of donepezil HCI following evening administration.Br. J. Clin. Pharmacol., 46 Suppl 1, 13–18 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Huang, W., Prasak, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/ carnitine transporter.J. Pharm. Exp. Ther., 290, 1482–1492 (1999).

    CAS  Google Scholar 

  • Wu, X., Kekuda, R., Huang, W., Fei, Y. J., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain.J. Biol. Chem., 273, 32776–32786 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer.J. Pharmacobio-Dyn., 4, 879–885 (1981).

    PubMed  CAS  Google Scholar 

  • Zhao, Q., Pahlmark, K., Smith, M. L., and Siesjo, B. K., Delayed treatment with the spin trap a-phenyl-n-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats.Acta Physiol. Scand., 152, 349–350 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sook Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YS., Lee, KE., Lee, NY. et al. Donepezil, tacrine and α-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Arch Pharm Res 28, 443–450 (2005). https://doi.org/10.1007/BF02977674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977674

Key words

Navigation