Skip to main content
Log in

Permeability of a capsaicin derivative, [14C]DA-5018 to blood-brain barrier corrected with HPLC method

  • Research Articles
  • Pharmaceutics & Pharmacokinetics
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the present work, the transport mechanism of a capsaicin derivative, DA-5018, through blood-brain barrier (BBB) has been investigated to evaluate the feasibility of potential drug development. The result of pharmacokinetic parameters obtained from the intravenous injection of plasma volume marker, [3H]RSA and [14C]DA-5018, indicated that both AUC, area under the plasma concentration curve and VD, volume of distribution in brain of [3H]RSA agreed with those reported (1620±10 percentage injected dose minute per milliliter (%IDmin/ml) and 12.0±0.1 μl/g, respectively). Elimination half-life and AUC of [14C]DA-5018 is corrected by the HPLC analysis, 19.6±1.2 min and 7.69±0.85% IDmin/ml, respectively. The metabolic rate of [14C] DA-5018 was very rapid. The blood-brain barrier permeability surface area (PS) product of [14C]DA-5018 was calculated to be 0.24±0.05 μl/min/g. The result of internal carotid artery perfusion and capillary depletion suggested that [14C]DA-5018 pass through BBB with the time increasingly. Investigation of transport mechanism of [14C]DA-5018 using agonist and antagonist suggested that vanilloid (capsaicin) receptor did not exist in the BBB, and nutrient carrier system in the BBB has no effect on the transport of DA-5018. In conclusion, despite the fact that penetration of DA-5018 through BBB is significant, the intact drug found in the brain tissue is small because of a rapid metabolism. Therefore, for the central analgesic effect of DA-5018, the method to increase the metabolic stability in plasma and the brain permeability should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Lundberg, J. M., and Saria, A., Polypeptide-containing neurons in airway smooth muscle.Annu. Rev. Physiol. 49, 557–572 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Johansson, O., Ljungdahl, A., and Lundberg, J. M., Peptidergic neurons.Nature 284, 515–521 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Saria, A., Martling, C., and Yan, Z., Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium and vagal nerve stimulation.Am. Rev. Respir., 41, 167–172 (1988).

    Google Scholar 

  • LaHann, T. R., Antinociceptive actions of capsaicin in rodents.Proc. West. Pharm. Soc. 26, 145–149 (1983).

    CAS  Google Scholar 

  • Holzer, P., Capsaicin; Cellular targets, mechanisms of action and selectivity for thin sensory neurons.Pharmacol. Rev., 43, 143–201 (1991).

    PubMed  CAS  Google Scholar 

  • Park, N. S., Ha, D. C., Choi, J. K., and Kim, H. S., Phenylacetamide derivatives and pharmaceutical compositions thereof.U. S. Patent No. 5, 242, 944 (1993).

    Google Scholar 

  • Bernstein, J. E., Korman, N. J., and Bickers, D. R., Topical capsaicin treatment of chronic postherpetic neuralgia.J. Am. Acad. Dermatol. 21, 265–270 (1991).

    Article  Google Scholar 

  • Ross, D. R., and Varipapa, R. J., Treatment of painful diabetic neuropathy with topical capsaicin.N. Eng. J. Med. 321, 474–475 (1989).

    CAS  Google Scholar 

  • McCarthy, G. W., and McCarthy, D. J., Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands.J. Rheumatol., 19 604–607 (1992).

    PubMed  CAS  Google Scholar 

  • Lee, B., Kim, J. H., Park, N. S., and Kong, J. Y., KR-25018; A Novel, orally active analgesic with nonnarcotic properties.Arch. Pharm. Res. 17: 304–308 (1994).

    Article  CAS  Google Scholar 

  • Reid, J., and McCulloch, J., Capsaicin and blood-brain barrier permeability.Neurosci. Lett. 81, 165–170 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Szallasi, A., and Goso, C., Competitive inhibition by capsazepine of [3H]Resiniferatoxin binding to central (spinal cord and dorsal root ganglion) and peripheral urinary bladder and airways) vanilloid (capsaicin) receptors in the rat.J Pharmacol. Exp. Ther. 267, 728–733 (1993).

    PubMed  CAS  Google Scholar 

  • Gibaldi, M., and Perrier, D.,Pharmacokinetics, Marcel Dekker, Inc. New York, 1982.

    Google Scholar 

  • Shim, H. J., Lee, J. J., Lee, S. D. and Kim, W. B., Determination of a new non-narcotic analgesic DA-5018, in plasma, urine and bile by HPLC.J. Chromatogr. B. Biomed. Appl. 689, 422–426 (1997).

    Article  CAS  Google Scholar 

  • Takasato, Y., Rapoport, S. I., and Smith, Q. R., An in situ brain perfusion technique to study cerebrovascular transport in the rat.Am. J. Physiol. 247, H484–493 (1984).

    PubMed  CAS  Google Scholar 

  • Triguero, D., Buciak, J. B., and Pardridge, W. M., Capillary depletion method for quantifying blood-brain barrier transport of circulating peptides and plasma protein.J. Neurochem. 54, 1883–1888 (1990).

    Article  Google Scholar 

  • Pardridge, W. M., Kang, Y. S., and Buciak, J. L., Transport of human recombinant brain-derived neurotrophic factor (BNDF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery.Pharm. Res. 11, 738–746 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Broadwell, R. D., Salcman, M., and Kaplan, R. S., Morphologic effect of dimethyl sulfoxide on the blood-brain barrier.Science 21, 164–166 (1982).

    Article  Google Scholar 

  • W. Michael Scheld Drug delivery to the central nervous system; General principles and relevance to therapy for infections of the central nervous system.Rev. Infec. Disea. 11, S1669-S1690 (1989).

    Google Scholar 

  • Samii, A., Bickel, U., Stroth, U., and Pardridge, W. M., Blood-brain barrier transport of neuropeptides: analysis with a metabolically stable dermorphin analogue.Am. J. Physiol. 267, E124-E131 (1994).

    PubMed  CAS  Google Scholar 

  • Nutt, J. G., Hammerstad, J. P., and Woodward, W. R., The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport.N. Engl. J. Med. 310, 483–488 (1984).

    PubMed  CAS  Google Scholar 

  • Sved, A. F., Goldberg, I. M., and Fernstrom, J. D., Dietary protein intake influences the antihypertensive potency of methyldopa in spontaneously hypertensive rats.J. Pharmacol. Exp. Ther. 214, 147–151 (1980).

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Brain metabolism; a perspective from the blood-brain barrier.Physiol. Rev. 63, 1481–1535 (1983).

    PubMed  CAS  Google Scholar 

  • Betz, A. L., Csejtey, J., and Goldstein, G. W., Hexose transport and phosphorylation by capillaries isolated from rat brain.Am. J. Physiol. 236, C96–102 (1979).

    PubMed  CAS  Google Scholar 

  • Brust, P., Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin.J. Neurochem. 46, 534–541 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, G. W, and Betz, A. L., The blood-brain barrier.Sci. Am. 255, 74–83 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Wu, D., Kang, Y. S., Bickel, U., and Pardridge, W. M., Blood-brain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine.Drug Metab. Dispos. 25, 768–771 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YS., Kim, JM. Permeability of a capsaicin derivative, [14C]DA-5018 to blood-brain barrier corrected with HPLC method. Arch Pharm Res 22, 165–172 (1999). https://doi.org/10.1007/BF02976541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976541

Key words

Navigation