Skip to main content
Log in

On-line conversion estimation for solvent-free enzymatic esterification systems with water activity control

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

On-line conversion estimation of enzymatic esterification reactions in solvent-free media was investigated. In principle, conversion to ester can be determined from the amount of water produced by the reaction, because water is formed as a by-product in a stoichiometric manner. In this study, we estimated the water production rate only from some measurements of relative humidity and water balances without using any analytical methods. In order to test the performance of the on-line conversion estimation, the lipase-catalyzed esterification ofn-capric acid andn-decyl alcohol in solvent-free media was performed whilst controlling water activity at various values. The reaction conversions estimated on-line were similar to those determined by offline gas chromatographic analysis. However, when the water activity was controlled at higher values, discrepancies between the estimated conversion values and the measured values became significant. The deviation was found to be due to the inaccurate measurement of the water content in the reaction medium during the initial stages of the reaction. Using a digital filter, we were able to improve the accuracy of the on-line conversion estimation method considerably. Despite the simplicity of this method, the on-line estimated conversions were in good agreement with the off-line measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents.Nature 409: 241–246.

    Article  CAS  Google Scholar 

  2. Zaks, A. (2001) Industrial biocatalysis.Curr. Op. Chem. Biol. 5: 130–136.

    Article  CAS  Google Scholar 

  3. Danielsson, B. and L. Flygare (1989) Biothermal analysis performed in organic solvents.Anal. Lett. 22: 1417–1428.

    CAS  Google Scholar 

  4. Stasinska, B., B. Danielsson, and K. Mosbach (1989) The use of biosensors in organic synthesis: peptide synthesis by immobilized α-chymotrypsin assessed with an enzyme thermistor.Biotechnol. Tech. 3: 281–288.

    Article  CAS  Google Scholar 

  5. Lammers, F. and T. Scheper (1997) On-line monitoring of enzyme-catalyzed biotransformations with biosensors.Enzyme Microb. Technol. 20: 432–436.

    Article  CAS  Google Scholar 

  6. Sarazin, C., F. Ergan, J.-P. Séguin, G. Goethals, M.-D. Legoy and J.-N. Barbotin (1996) NMR on-line monitoring of esterification catalyzed by cutinase.Biotechnol. Bioeng. 51: 636–644.

    Article  CAS  Google Scholar 

  7. Brecker, L. and D. W. Ribbons (2000) Biotransformations monitoredin situ by proton nuclear magnetic resonance spectroscopy.Trends Biotechnol. 18: 197–202.

    Article  CAS  Google Scholar 

  8. Weber, H. and L. Brecker (2000) Online NMR for minitoring biocatalysed reactions.Curr. Op. Biotechnol. 11: 572–578.

    Article  CAS  Google Scholar 

  9. Wang, H. Y., C. L. Cooney, and D. I. C. Wang (1977) Computer-aided baker's yeast fermentations.Biotechnol. Bioeng. 19: 69–86.

    Article  CAS  Google Scholar 

  10. Zabriskie, D. W. and A. E. Humphrey (1978) Real-time estimation of aerobic batch fermentation biomass concentration by component balancing.AIChE J. 24: 138–146.

    Article  CAS  Google Scholar 

  11. Constantinides, A. and P. Shao (1981) Material balancing applied to the prediction of glutamic acid production and cell mass formation.Ann. NY Acad. Sci. 369: 167–180.

    Article  CAS  Google Scholar 

  12. Liao, J. C. (1989) Fermentation data-analysis and state estimation in the presence of incomplete mass balance.Biotechnol. Bioeng. 33: 613–622.

    Article  CAS  Google Scholar 

  13. Xiu, Z.-L., W.-D. Deckwer, and A.-P. Zeng (1999) Estimation of rates of oxygen uptake and carbon dioxide evolution of animal cell culture using material and energy balances.Cytotechnology 29: 159–166.

    Article  CAS  Google Scholar 

  14. Kim, J. E., J. J. Han, J. H. Yoon, and J. S. Rhee (1998) Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose.Biotechnol. Bioeng. 57: 121–125.

    Article  CAS  Google Scholar 

  15. Pepin, P. and R. Lortie (1999) Influence of water activity on the enantioselective esterification of(R,S)-ibuprofen byCandida amarctica lipase B in solventless media.Biotechnol. Bioeng. 63: 502–505.

    Article  CAS  Google Scholar 

  16. Wehtje, E., D. Costes, and P. Adlercreutz (1999) Continuous lipase-catalyzed production of wax ester using silicone tubing.J. Am. Oil Chem. Soc. 76: 1489–1493.

    Article  CAS  Google Scholar 

  17. Won, K. and S. B. Lee (2001) Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems.Biotechnol. Prog. 17: 258–264.

    Article  CAS  Google Scholar 

  18. Condoret, J.-S., S. Vankan, X. Joulia, and A. Marty (1997) Prediction of water adsorption curves for heterogeneous biocatalysis in organic and supercritical solvents.Chem. Eng. Sci. 52: 213–220.

    Article  CAS  Google Scholar 

  19. Han, J. J. and T. Yamane (1999) Enhancement of both reaction yield and rate of synthesis of structured triacylglycerol containing eicosapentaenoic acid under vacuum with water activity control.Lipids 34: 989–995.

    Article  CAS  Google Scholar 

  20. McMinn, J. H., M. J. Sowa, S. B. Charnick, and M. E. Paulaitis (1993) The hydration of protein in nearly anhydrous organic solvent suspensions.Biopolymers 33: 1213–1224.

    Article  CAS  Google Scholar 

  21. Yang, F. and A. J. Russell (1996) The role of hydration in enzyme activity and stability: 1. water adsorption by alcohol dehydrogenase in a continous gas phase reactor.Biotechnol. Bioeng. 49: 700–708.

    Article  CAS  Google Scholar 

  22. Brunauer, S., P. H. Emmett, and E. Teller (1938) Adsorption of gases in multimolecular layers.J. Am. Chem. Soc. 60: 309–319.

    Article  CAS  Google Scholar 

  23. Lee, S. B. and K.-J. Kim (1995) Effect of water activity on enzyme hydration and enzyme reaction rate in organic solvents.J. Ferment. Bioeng. 79: 473–478.

    Article  CAS  Google Scholar 

  24. Arroyo, M., J. M. Sanchez-Montero, and J. V. Sinisterra (1996) A new method to determine thea w range in which immobilized lipases display optimum activity in organic media.Biotechnol. Tech. 10: 263–266.

    Article  CAS  Google Scholar 

  25. De la Casa, R. M., J. M. Sanchez-Montero, and J. V. Sinisterra (1996) Water adsorption isotherm, as a tool to predict the preequilibrium water amount in preparative esterification.Biotechnol. Lett. 18: 13–18.

    Article  Google Scholar 

  26. Lim, H. C. and K. S. Lee (1992) Process control and optimization. In: Pons MN. Bioprocess monitoring and control. München: Hanser Publishers. p. 159–222.

    Google Scholar 

  27. Seborg, D. E., T. F. Edgar, and D. A. Mellichamp (1989)Process Dynamics and Control. John Wiley & Sons, Singapore.

    Google Scholar 

  28. Oisiovici, R. M., S. L. Cruz, and J. A. F. R. Pereira (1999) Digital filtering in the control of a batch distillation columm.ISA Trans. 38: 217–224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, K., Lee, S.B. On-line conversion estimation for solvent-free enzymatic esterification systems with water activity control. Biotechnol. Bioprocess Eng. 7, 76–84 (2002). https://doi.org/10.1007/BF02935883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935883

Keywords

Navigation