Skip to main content
Log in

The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal algaScenedesmus obliquus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The color of light (white, red, blue, and green) had a significant effect on the growth and reproductive processes (both in the nucleocytoplasmic and chloroplast compartment of the cells) in synchronous cultures ofScenedesmus obliquus. This effect decreased in the order red > white > blue > green. In the same order, the light phase of the cell cycle (time when first autospores started to be released) was prolonged. The length of dark phase (time when 100% of daughters were allowed to release from mothers) was not influenced and was the same for all colors. Critical cell size for cell division in green light was shifted to a smaller size (compared with cells grown in other lights) and so was the size of released daughters. The nuclear cycle was slowed in blue and even in green light, contrary to cells grown in red and white light. At the beginning of the cell cycle, one-nucleus daughters possess ∼ 10 nucleoids; during the cell cycle their number doubled in all variants before the division of nuclei. Both events were delayed in cultures grown more slowly — most markedly in green light. Smaller daughters in the green variant possessed a lower number of nucleoids. Motile cells released in continuous green or blue lights but not in red one were rarely observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDK(s):

cyclin-dependent kinase(s)

DAPI:

4,6′-diamidino-2-phenylindole

References

  • Alrawass B., Grolig F., Wagner G.: High irradiance blue light affects cortical microtubules in the green algaMougeotia scalaris.Plant Cell Physiol.38, 882–886 (1997).

    CAS  Google Scholar 

  • Beck C.F., Haring M.A.: Gametic differentiation ofChlamydomonas.Internat.Rev.Cytol.168, 259–301 (1996).

    Article  CAS  Google Scholar 

  • Cain J.R., Trainor F.R.: Regulation of gametogenesis inScenedesmus obliquus (Chlorophyceae).J.Phycol.12, 383–390 (1976).

    CAS  Google Scholar 

  • Carroll J.W., Thomas J., Dunaway C., O’Kelley J.C.: Light-induced synchronization of algal species — the effect of color lights.Photochem.Photobiol.12, 91–98 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Cepák V., Zobačová M., Zachleder V.: The effect of cadmium ions on the cell cycle of the green flagellateChlamydomonas noctigama. Arch.Hydrobiol. (Suppl. 144),Algolog.Stud.106, 117–129 (2002).

    Google Scholar 

  • Correa-Reyes J.G., Sanchez-Saavedra M.D., Siqueiros-Beltrones D.A., Flores-Acevedo N.: Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions.J.Shellfish Res.20, 603–610 (2001).

    Google Scholar 

  • Corzo A., Niell F.X.: Blue-light induction ofin situ nitrate reductase activity in the marine green algaUlva rigida.Austral.J.Plant Physiol.19, 625–635 (1992).

    CAS  Google Scholar 

  • Epel N.L., Krauss R.V.: The inhibitory effect of light on growth ofPrototheca zopfiKreuger.Biochim.Biophys.Acta120, 73–83 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Figueroa F.L., Aguilera J., Jimenez C., Vergara J.J., Robles M.D., Niell F.X.: Growth, pigment synthesis and nitrogen assimilation in the red algaPorphyra sp. (Bangiales, Rhodophyta) under blue and red light.Sci.Mar.59, 9–20 (1995a).

    Google Scholar 

  • Figueroa F.L., Aguilera J., Niell F.X.: Red- and blue-light regulation of growth and photosynthetic metabolism inPorphyra umbilicalis (Bangiales, Rhodophyta).Eur.J.Phycol.30, 11–18 (1995b).

    Article  Google Scholar 

  • Furukawa T., Watanabe M., Shihira-Ishikawa I.: Green- and blue-light-mediated chloroplast migration in the centric diatomPleurosira laevis.Protoplasma203, 214–220 (1998).

    Article  Google Scholar 

  • Gabrys H.: Chloroplast movement inMougeotia induced by blue light pulses.Planta166, 134–140 (1985).

    Article  Google Scholar 

  • Kataoka H.: Phototropism inVaucheria geminata. II. The mechanism of bending and branching.Plant Cell Physiol.16, 439–448 (1975).

    Google Scholar 

  • Klein R.M.: Effects of green light on biological systems.Biol.Rev.67, 199–284 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kubin S., Borns E., Doucha J., Seiss U.: Light absorption and production rate ofChlorella vulgaris in light of different spectral composition.Biochem.Physiol.Pfl.178, 193–205 (1983).

    CAS  Google Scholar 

  • Kuroiwa T., Suzuki T.: An improved method for the demonstration of thein situ chloroplast nuclei in higher plants.Cell Struct Funct.5, 195–197 (1980).

    Article  Google Scholar 

  • Kuroiwa T., Suzuki T., Ogawa K., Kawano S.: The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development.Plant Cell Physiol.22, 381–396 (1981).

    Google Scholar 

  • Mineyuki Y., Kataoka H., Masuda Y., Nagai R.: Dynamic changes in the actin cytoskeleton during the high-fluence rate response of theMougeotia chloroplast.Protoplasma185, 222–229 (1995).

    Article  CAS  Google Scholar 

  • Mouget J.L., Rosa P., Tremblin G.: Acclimation ofHaslea ostrearia to light of different spectral qualities — confirmation of chromatic adaptation in diatoms.J.Photochem.Photobiol.75, 1–11 (2004).

    Article  CAS  Google Scholar 

  • Nigg E.A.: Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle.BioEssays17, 471–480 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Nossag J., Kasprik W.: The movement ofMicrasterias thomasiana (Desmidiaceae, Zygnematophyceae) in directed blue light.Phycologia32, 332–337 (1993).

    Google Scholar 

  • Nultsch W., Hader D.P.: Photomovement in motile microorganisms — 2.J.Photochem.Photobiol.47, 837–869 (1988).

    Article  CAS  Google Scholar 

  • Oldenhof H., Bišová K., Van Den Ende H., Zachleder V.: Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division inChlamydomonas reinhardtii.Plant Physiol.Biochem.42, 341–348 (2004a).

    Article  PubMed  CAS  Google Scholar 

  • Oldenhof H., Zachleder V., Van Den Ende H.: Blue light delays commitment to cell division inChlamydomonas reinhardtii.Plant Biol.6, 689–695 (2004b).

    Article  PubMed  CAS  Google Scholar 

  • Pearson G.A., Serrao E.A., Dring M., Schmid R.: Blue-and green-light signals for gamete release in the brown algaSilvetia compressa.Oecologia138, 193–201 (2004).

    Article  PubMed  Google Scholar 

  • Sagert S., Schubert H.: Acclimation of the photosynthetic apparatus ofPalmaria palmata (Rhodophyta) to light qualities that preferentially excite Photosystem-I or Photosystem-II.J.Phycol.31, 547–554 (1995).

    Article  CAS  Google Scholar 

  • Sanchez-Saavedra M.P., Voltolina D.: Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures.Ciencias Marinas28, 273–279 (2002).

    Google Scholar 

  • Schuchart H.: Photomovement of the red algaPorphyridium cruentum (Ag)Naegeli. 3. Action spectrum of the photophobic response.Arch.Microbiol.128, 105–112 (1980).

    Article  CAS  Google Scholar 

  • Stals H., Casteels P., Van Montagu M., Inze D.: Regulation of cyclin-dependent kinases inArabidopsis thaliana.Plant Mol.Biol.43, 583–593 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J., Linden H.: Light induction of carotenoid biosynthesis genes in the green algaHaematococcus pluvialis: regulation by photosynthetic redox control.Plant Mol.Biol.52, 343–356 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Trainor F.R., Burg C.:Scenedesmus obliquus sexuality.Science148, 1094–1095 (1965).

    Article  PubMed  Google Scholar 

  • Umeda M., Umeda-Hara C., Yamaguchi M., Hashimoto J., Uchimiya H.: Differential expression of genes for cyclin-dependent protein kinases in rice plants.Plant Physiol.119, 31–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Weissig H., Beck C.F.: Action spectrum for the light-dependent step in gametic differentiation ofChlamydomonas reinhardtii.Plant Physiol.97, 118–121 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth K., Rhiel E.: Influence of light quality and gassing on the vertical migration of diatoms inhabiting the Wadden Sea.Helgoland Mar.Res.58, 211–215 (2004).

    Article  Google Scholar 

  • Zachleder V., Šetlík I.: Effect of irradiance on the course of RNA synthesis in the cell cycle ofScenedesmus quadricauda.Biol. Plant.24, 341–353 (1982).

    Article  CAS  Google Scholar 

  • Zachleder V., Kuptsová E.S., Los D.A., Cepák V., Kubin S., Shapiguzov J.M., Semenenko V.E.: Division of chloroplast nucleoids and replication of chloroplast DNA during the cell cycle ofDunaliella salina grown under blue and red light.Protoplasma150, 160–167 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cepák.

Additional information

The paper was supported by grants provided byGrant Agency of the Czech Republic no. 204/03/1113,Ministry of Education, Youth and Sports of the Czech Republic no. IM 679 859 3901 and institutional research plan no. AV 0Z 6005 0516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cepák, V., Přibyl, P. & Vítová, M. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal algaScenedesmus obliquus . Folia Microbiol 51, 342–348 (2006). https://doi.org/10.1007/BF02931828

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931828

Keywords

Navigation