Skip to main content
Log in

Iron Oxidation byThiobacillus ferrooxidans

Scientific Note

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Conclusions

Results of the parametric study of factors affecting ferrous iron oxidation show that the maximum conversion rate, which corresponds to the relative effectiveness of a given strain ofT. ferrooxidans on iron oxidation, is a function of initialpH, initial ferrous iron concentration, and cell number of inoculum size. However, the lag time, which corresponds to the time required to obtain the maximum conversion rate, is affected by initial ferrous iron concentration and initial cell number, but not by initialpH.

Measuring ferrous iron concentration during its oxidation in 9K medium is a quick and simple method for predicting the relative potential of various strains ofT. ferrooxidans in microbial leaching operations. However, according to Norris(16), developing better strains ofT. ferrooxidans may not improve leaching rates if mineral dissolution is slower than iron oxidation in solution. Therefore, as better iron-oxidizing strains of the bacterium are identified, other improvements in microbial leaching operations need to be developed.

Based on the data presented in this paper, a low initial ferrous iron concentration and a large inoculum volume (initial cell number) are recommended for comparative studies of various strains ofT. ferrooxidans. A low initialpH (1.8–2.0) is also recommended to prevent ferrous iron precipitation. In addition, before determining its maximum rate of oxidation of ferrous iron, each strain ofT. ferrooxidans grown for a comparative study should be washed thoroughly to obtain cell suspensions containing a minimum amount of ferric iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brierly, C. L. (1978),Crit. Rev. Microbiol. 6, 207–262.

    Article  Google Scholar 

  2. Lundgren, D. G. and Silver, M. (1980),Annu. Rev. Microbiol. 34, 263–283.

    Article  CAS  Google Scholar 

  3. Le Roux, N. (1987),The Chem. Eng. Jan., 29.

  4. Silverman, M. P. and Lundgren, D. G. (1959),J. Bacteriol. 77, 642–647.

    Article  CAS  Google Scholar 

  5. Atkins, A. S. (1978),Metallurgical Applications of Bacteria Leaching and Related Microbiological Phenomena, Murr, L. E., Torma, A. E., and Brierley, J. A., eds., Academic, New York, pp. 403–426.

    Google Scholar 

  6. Chang, Y. C. and Myerson, A. S. (1982),Biotechnol. Bioeng. 24, 889–902.

    Article  CAS  Google Scholar 

  7. Hoffman, M. R., Faust, B. C., Panda, F. A., Koo, H. H., and Tsuchiya, H. M. (1981),Appl. Environ. Microbiol. 42, 259–271.

    Google Scholar 

  8. Silverman, M. P. (1967),J. Bacteriol. 94, 1046–1051.

    CAS  Google Scholar 

  9. Lacey, D. T. (1970),Biotechnol. Bioeng. 12, 29–50.

    Article  CAS  Google Scholar 

  10. Smith, J. R., Luthy, R. G., and Middleton, A. C. (1988),J. Water Pol. Con. Fed. 60, 518–530.

    CAS  Google Scholar 

  11. Singer, P. C. and Stumm, W. (1970),Science 167, 1121–1123.

    Article  CAS  Google Scholar 

  12. Chang, C. C. and Myerson, A. S. (1982),Biotechnol. Bioeng. 24, 889–902.

    Article  CAS  Google Scholar 

  13. Smith, E. L. (1983),Principles of Biochemistry, McGraw-Hill, New York.

    Google Scholar 

  14. Stumm-Zollinger, E. (1972),Arch. Microbiol. 83, 110–119.

    Google Scholar 

  15. Kelly, D. P. and Jones, C. A. (1978),Metallurgical Applications of Bacteria Leaching and Related Microbiological Phenomena, Murr, L. E., Torma, A. E., and Brierley, J. A., eds., Academic, New York, pp. 19–44.

    Google Scholar 

  16. Norris, P. R. (1989),Biohydrometallurgy, Proc. Internat. Symp., Jackson, WY,Aug., 3–14.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Sproull, R.D. Iron Oxidation byThiobacillus ferrooxidans . Appl Biochem Biotechnol 28, 907–915 (1991). https://doi.org/10.1007/BF02922660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922660

Index Entries

Navigation