Skip to main content
Log in

Copper-rich nucleoprotein generated by micrococcal nuclease

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nuclei from calf thymus tissue digested with micrococcal nuclease under nonchelating conditions yielded soluble nucleoprotein enriched in copper. Following limited digestion, the ratio of μg Cu:mg DNA was inversely related either to percent solubility of chromatin or to levels of enzyme maintaining an enzyme:A 260 ratio of 0.059. The enzyme appeared to cleave preferentially regions of chromatin where copper is localized, releasing no additional metal upon further digestion. Moreover, the highest copper: DNA ratio was always associated with the least-digested sample.

The distribution between copper and angiotensin II (AII) in chromatin fragments following slight nuclease digestion suggests a possible link between copper and nuclear AII binding. When nuclei are incubated with AII prior to digestion and dialysis, solubilized chromatin contained about three times more copper than buffer control. Metal profiles generated from gel (A-5 M) chromatography for these samples were distinctive: copper peaks appeared near or adjacent to linker DNA regions, and in the case of AII, coincided with fragments containing specific AII receptors; thus, there appears to be an enrichment of copper in these active nucleoprotein fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Kornberg,Annu. Rev. Biochem. 46, 931 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. J. D. McGhee and G. Felsenfeld,Annu. Rev. Biochem. 94, 1115 (1980).

    Article  Google Scholar 

  3. M. Cockell, D. Rhodes, and A. Klug,J. Mol. Biol. 170, 423 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. S. Weishrod,Nature 297, 289 (1982).

    Article  Google Scholar 

  5. R. P. Aaronson and E. Woo,J. Cell Biol. 90, 181 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. D. E. Olins and A. Olins,J. Cell Biol. 53, 715 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. D. A. Beary, D. L. Vizard, R. A. LaBiche, K. J. Hardy, and S. E. Bryan,Biochem. Biophys. Res. Commun. 104, 491 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. S. E. Bryan, D. L. Vizard, D. A. Beary, R. A. LaBiche, and K. J. Hardy,Nucleic Acid Res. 9, 5811 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. R. N. Re, D. L. Vizard, J. Brown, and S. E. Bryan,Biochem. Biophys. Res. Commun. 119, 220 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. R. N. Re, D. L. Vizard, J. Brown, and S. E. Bryan,J. Hypertension (in press) (1985).

  11. R. N. Re, R. A. LaBiche, and S. E. Bryan,Biochem. Biophys. Res. Commun. 110, 61 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. J. N. Vanderbilt, K. S. Bloom, and J. N. Anderson,J. Biol. Chem 257, 13009 (1982).

    PubMed  CAS  Google Scholar 

  13. C. D. Lewis and U. K. Laemmli,Cell 29, 171 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, S.E., LeGros, L., Brown, J. et al. Copper-rich nucleoprotein generated by micrococcal nuclease. Biol Trace Elem Res 8, 219–229 (1985). https://doi.org/10.1007/BF02917461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917461

Index Entries

Navigation