Skip to main content
Log in

Actin cleavage in various tumor cells is not a critical requirement for executing apoptosis

  • Article
  • Published:
Pathology & Oncology Research

Abstract

Actin is a major cytoskeletal protein which is involved in many physiological cellular functions such as motility, cell shape, and adhesion. Recently, actin has also been reported to be cleaved by apoptotic proteases (i.e., caspases) and this cleavage is thought to contribute to the apoptotic process. However, conflicting data also exists as to whether actin represents a true caspase substrate during apoptosis induction in vivo (i.e., inside the cells). In this study, we critically examined the actin cleavage patterns during apoptosis of several tumor cell lines derived from three different species (i.e., mouse, rat, and human). Our findings demonstrate that: 1) actin cleavage in vivo is not a common phenomenon since apoptosis caused by multiple inducers in most cell types examined occurs without evidence of actin degradation; and 2) in certain cell types (e.g., U937), spontaneous, actin cleavage is observed which is not prevented by various specific chemical/peptide inhibitors of proteases such as caspases or serine proteases although apoptosis per se is retarded by some of these inhibitors. Our results conclude that actin is not a critical substrate for apoptotic proteases in vivo during apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peter ME, Heufelder AE, Hengartner MO: Advances in apop-tosis research. Proc Natl Acad Sci USA 94:12376–12737, 1997.

    Article  Google Scholar 

  2. Salvesen, GS, Dixit, VM: Caspases: intracellular signaling by proteolysis. Cell 91:443–446, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Porter AG, Patrick NG, Janicke RU: Death substrates come alive. Bioassays 19:501–507, 1997.

    Article  CAS  Google Scholar 

  4. Donato N, Perez M: Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAFl proteolysis in ME-180 cells. J Biol Chem 273:5067–5072, 1998.

    Article  PubMed  CAS  Google Scholar 

  5. Emoto Y, Manome Y, Meinhardt G et al: Proteolytic activation of protein kinase Cб by an ICE-like protease in apoptotic cells. EMBO J 14:6148–6156, 1995.

    PubMed  CAS  Google Scholar 

  6. Ghayur T, Hugunin M, Talanian R et al: Proteolytic activation of protein kinase Cб by an ICE/CED-3 like protease induces characteristics of apoptosis. J Exp Med 184:2399–2404, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Datta R, Kojima H, Yoshida K et al: Caspase-3 -mediated cleavage of protein kinase C θG in induction of apoptosis. J Biol Chem 272:20317–20320, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Grandgirad D, Studer E, Monney E et al: Alphaviruses induce apoptosis in bcl-2-overexpressing cells: evidence for an cas-pase-mediated, proteolytic inactivation of bcl-2. EMBO J 17:1268–1278, 1998.

    Article  Google Scholar 

  9. Wissing D, Mouritzen H, Egeblad M et al: Involvement of cas-pase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci USA 94:5073–5077, 1977.

    Article  Google Scholar 

  10. Chen E, Marechal V, Moreau J et al: Proteolytic cleavage of the mdm2 oncoprotein during apoptosis. J Biol Chem 272:22966–22973, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Erhardt P, Tomaselli KJ, Cooper GM: Identification of the mdm2 oncoprotein as a substrate for CPP32-like apoptotic proteases. J Biol Chem 272:15409–15052, 1997.

    Article  Google Scholar 

  12. Na S, Chuang TH, Cunningham, A et al: D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J Biol Chem 271:11209–11213, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Cryns VL, Byun Y, Rana A et al: Specific proteolysis of the kinase protein kinase C-kinase 2 by caspase-3 during apoptosis. J Biol Chem 272:29449–29453, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Cosulich SC, Horiuchi H, Zerial M et al Cleavage of rabaptin-5 blocks endosome fusion during apoptosis. EMBO J 16:6182–6191, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Pai J, Wiedenfeld EA et al: Purification of an inter-leukin-lβ converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J Biol Chem 270:18044–18050, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Wang X, Zelenski NG, Yang Y et al Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J 15:1012–1020, 1996.

    PubMed  CAS  Google Scholar 

  17. Pai JT, Brown MS, Goldstein JE: Purification and cDNA cloning of a second apoptosis-related cysteine protease that cleaves and inactivates sterol regulatory element binding proteins. Proc Natl Acad Sci USA 93:5437–5442, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic -cells regulated by caspase-mediated activation of PAK2. Science 276:1571, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Friedlandef RM, Gagliardini V, Rotello RY et al: Functional role of interleukin lβ(IL-lβ) in IL-lβ-converting enzyme-mediated apoptosis. J Exp Med 184:717–724, 1996.

    Article  Google Scholar 

  20. Gu Y, Kuida K, Tsutsui H et al: Activation of interferon-γ inducing factor mediated by interleukin-1 β converting enzyme. Science 275:206–209, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg YP, Nicholson DaW, Rasper DM, et al: Cleavage of huntington by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genetics 13:442–449, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Widmann C, Gerwins P, Johnson NL et al: MEK kinase 1, a substrate for DEVD-Directed caspases, is involved in genotox-in-induced apoptosis. Mol. Cell Biol 18:2416–2429, 1998.

    PubMed  CAS  Google Scholar 

  23. Kim TW, Pettingell WH, Jung YK et al: Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a cas-pase-3 family protease. Science 277:373–376, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Mashima T, Naito M, Fujita N et al: Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not an ICE in VP16-induced U937 apoptosis. Biochem Biophys Res Comm 217:1185–1192, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Chen Z., Naito M, Mashima T et al: Activation of actin-cleav-able interleukin 1 β-converting enzyme (ICE) family protease CPP32 during chemotherapeutic agent-induced apoptosis in ovarian carcinoma cells. Cancer Res 56:5224–5229, 1996.

    PubMed  CAS  Google Scholar 

  26. Mashima T, Naito M, Noguchi K et al: Actin cleavage by CPP32/apopain during the development of apoptosis. Oncogene 14:1007–1012, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Kayalar C, Ord T, Testa MP et al: Cleavage of actin by interleukin 1 β-converting enzyme to reverse DNase I inhibition. Proc Natl Acad Sci USA 93:2234–2238, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Brown SB, Bailey K, Savill J: Actin is cleaved during constitutive apoptosis. Biochem. J. 323:233–237, 1997.

    PubMed  CAS  Google Scholar 

  29. Guenal I, Tiseler X Mignotte B: Down-regulation of actin genes precedes microfilament network disruption and actin cleavage during p53-mediated apoptosis. J Cell Science 110:489–495, 1997.

    PubMed  CAS  Google Scholar 

  30. Brancolini C, Bernedetti M, Schneider C. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J 14:5179–5190, 1995.

    PubMed  CAS  Google Scholar 

  31. Selliah N, Brooks WH, Roszman T: Proteolytic cleavage of -actinin by calpain in T cells stimulated with anti-CD3 monoclonal antibody. J Immunol 156:3215–3221, 1996.

    PubMed  CAS  Google Scholar 

  32. Kothakota S, Azuma T, Teinhard C et al: Caspase-3 generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Wen LP, Fahrni JA, Troie A et al: Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Levkau B, Herren B, Koyama H et al: Caspase-mediated cleavage of focal adhesion kinase ppl25FAK and dissembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 187:579–586, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Martin SJ, O’Brien GA, Nishioka WK et al: Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Vanags DM, Porn-Ares I, Coppola S et al: Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271:31075–31085, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Cryns VL, Bergeron L, Zhu H et al: Specific cleavage of α-fod-rin during Fas-and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1 β-converting enzyme/Ced-3 protease distinct from the poly (ADP-ribose) polymerase protease. J Biol Chem 271:31277–31282, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Ku NO, Liao J, and Omary MB: Apoptosis generates stable fragments of human type I keratins. J Biol Chem 272:33197–33203, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Caulin C, Salvesen GS, Oshima RG: Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379–1394, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. An B, Dou QP: Cleavage of retinoblastoma protein during apoptosis:an interleukin 1 β-converting enzyme-like protease as candidate. Cancer Res 56:438–442, 1996.

    PubMed  CAS  Google Scholar 

  41. Janicke RU, Walker PA, Lin XY et al: Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J 24:6969–6978, 1996.

    Google Scholar 

  42. Tan X, Martin SJ, Green DR et al: Degradation of retinoblastoma protein in tumor necrosis factor-β and CD95-induced cell death. J Biol Chem 272:9613–9616, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Chen W, Otterson GA, Lipkowitz K et al: Apoptosis is associated with cleavage of a 5 kDa fragment from Rb which mimics dephosphorylation and modulates E2F binding. Oncogene 14:1243–1248, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Beyaert R, Kidd VJ, Cornells S et al: Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor. J Biol Chem 272:11694–11697, 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Ravi R, Bedi A, Fuchs EJ, Bedi A: CD95 (Fas)-induced caspase-mediated proteolysis of NF-kB. Cancer Res 58:882–886, 1998.

    PubMed  CAS  Google Scholar 

  46. Barkett M, Xue D, Horvitz HR et al. Phosphorylation of IkB-α inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 272:29419–29422, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Casciola-Rosen LA, Miller DK, Anhalt GJ et al: Specific cleavage of the 70-kDa protein component of the Ul small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 269:30757–30760, 1994.

    PubMed  CAS  Google Scholar 

  48. Tewari M, Beidler D, Dixit VM: Crm-A-Inhibitable cleavage of the 70-kDa protein component of the Ul small nuclear ribonucleoprotein during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 270:18738–18741, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Gu Y, Sarnecki C, Aldape RA et al: Cleavage of poly (ADP-ribose) polyermerase by interleukin-1β-converting enzyme and its homologs TX and Nedd-2. J Biol Chem 270:18715–18718, 1995.

    Article  PubMed  CAS  Google Scholar 

  50. Lazebnik YA, Kaufmann SH, Desnoyers S et al: Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Lippke JA, Fu Y, Sarnecki C et al: Identification and characterization of CPP32/Mch2 homology 1, a novel cysteine protease similar to CPP32. J Biol Chem 271:1825–1831, 1996.

    Article  PubMed  CAS  Google Scholar 

  52. Han Z, Malik N, Carter T et al: DNA-dependent protein kinase is a target for a CPP32-like apoptotic protease. J Biol Chem 271:25035–25040, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Song Q, Lees-Miller SP, Kumar S et al: DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238–3246, 1996.

    PubMed  CAS  Google Scholar 

  54. Casciola-Rosen LA, Anhalt GJ, Rosen A: DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 182:1615–1634, 1995.

    Article  Google Scholar 

  55. Water house N, Kumar S, Song Q, et al: Heteronuclear ribonu-cleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1 β-converting enzyme-like proteases in apoptosis. J Biol Chem 271:29335–29341, 1996.

    Article  Google Scholar 

  56. Ubeda M, Habener JF: The large subunit of the DNA replication complex C (DSEB/RF-C140) cleaved and inactivated by caspase-3 (CPP32/YAMA) during Fas-induced apoptosis. J Biol Chem 272:19562–19568, 1997.

    Article  PubMed  CAS  Google Scholar 

  57. Schwab BL, Leist M, Knippers R et al: Selective proteolysis of the nuclear replication factor in MCM3 in apoptosis. Exp Cell Res 238:415–421, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Sakahira H, Enari M, Nagata S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Casiano CA, Martin SJ, Green DR et al: Selective cleavage of nuclear autoantigens during CD95 (Fas-APO-l)-mediated T cell apoptosis. J Exp Med 184:765–770, 1996.

    Article  PubMed  CAS  Google Scholar 

  60. Lazebnik YA, Takahashi A, Moir RD et al: Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92:9042–9046, 1995.

    Article  PubMed  CAS  Google Scholar 

  61. Orth K, Chinnaiyan AM, Garg M et al: The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16433–16446, 1996.

    Google Scholar 

  62. Takahashi A, Alnemri ES, Lazebnik YA et al: Cleavage of lamin A by Mch2a but not CPP32: multiple interleukin 1 β-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 93:8395–8400, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. McConkey D: Calcium-dependent, interleukin 1 β-converting enzyme inhibitor-insensitive degradation of lamin B1 and DNA fragmentation in isolated thymocyte nuclei. J Biol Chem 271:22398–22406, 1996.

    PubMed  CAS  Google Scholar 

  64. Neamati, NA, Fernandez, S, Wright, J et al: Degradation of lamin B, precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei. J Immunol. 154: 3788–3795, 1995.

    PubMed  CAS  Google Scholar 

  65. Oberhammer EA, Hochegger K, Froschi G et al: Chromatin condensation during apoptosis is accompanied by degradation of lamin A + B, without enhanced activation of cdc2 kinase. J Cell Biol 126:827–837, 1994.

    Article  PubMed  CAS  Google Scholar 

  66. Rao L, Perez D, and White E: Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441–1445, 1996.

    Article  PubMed  CAS  Google Scholar 

  67. Gueth-Hallonet C, Weber K, Osborn M: Cleavage of the nuclear matrix protein NuMA during apoptosis. Exp Cell Res 233:21–24, 1997.

    Article  PubMed  CAS  Google Scholar 

  68. Gohring F, Schwab BL, Nicotera P et al: The novel SAR-bind-ing domain of scaffoled attachment factor A (SAF-A) is a target in apoptotic nuclear breakdown. EMBO J 16:7361–7371, 1997.

    Article  PubMed  CAS  Google Scholar 

  69. Clem RJ, Cheng EHY, Karp CL et al: Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci USA 95:554–559, 1998.

    Article  PubMed  CAS  Google Scholar 

  70. Cardone MH, Salvesen GS, Widmann C et al: The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90:315–323, 1997.

    Article  PubMed  CAS  Google Scholar 

  71. Villa P, Henzel W, Sensenbrenner M et al: Calpain inhibitors, but not caspase inhibitors, prevent actin proteolyis and DNA fragmentation during apoptosis. J Cell Sci 111:713–722, 1998.

    PubMed  CAS  Google Scholar 

  72. Wellington CL, Ellerby LM, Hackam AS et al: Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273:9518–9167, 1998.

    Article  Google Scholar 

  73. Graves JD, Gotoh Y, Draves KE et al: Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mstl. EMBO J 17:2224–2234, 1998.

    Article  PubMed  CAS  Google Scholar 

  74. Song GQ, Wei T, Lees-Miller S et al: Resistance of actin cleavage during apoptosis. Proc Natl Acad Sci USA 94:157–162, 1997.

    Article  PubMed  CAS  Google Scholar 

  75. Rice RL, Tang DG, Haddad M et al: 12(S)-hydroxyeicosate-traenoic acid increases the actin microfilament content in B16a melanoma cells: A protein kinase-dependent process. Int J Cancer 1998, in press.

  76. Tang, DG, Chen YQ, Honn KV: Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci USA 93:5241–5246, 1996.

    Article  PubMed  CAS  Google Scholar 

  77. Tang DG, Guan KL, Honn KV et al: Suppression of W256 car-cinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids. Int J Cancer 72:1078–1087, 1997.

    Article  PubMed  CAS  Google Scholar 

  78. Tang DG, Honn KV: Apoptosis of W256 carcinosarcoma cells of the monocytoid origin induced by NDGA involves lipid per-oxidation and depletion of GSH: role of 12-lipoxygenase in regulating tumor cell survival. J Cell Physiol 172:155–170, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Tang DG, Li L, Zhu Z et al: Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem Biophys Res Commun 242:380–384, 1998.

    Article  PubMed  CAS  Google Scholar 

  80. Apgar JR: Activation of protein kinase C in rat basophilic leukemia cells stimulates increased production of phos-phatidylinositol 4-phosphate and phosphatidylinositol 4,5-bis-phosphate: correlation with actin polymerization. Mol Biol Cell 6:97–108, 1995.

    PubMed  CAS  Google Scholar 

  81. Cotter TG, Lennon, SV, Glynn, JM et al: Microfilament-dis-rupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res 52:997–1005, 1992.

    PubMed  CAS  Google Scholar 

  82. Rice RL, Tang DG, Honn KV et al: 12(S)-HETE may differentially modulate tumor cell survival and apoptosis. In: Eicosanoid and other Bioactive Lipids In Cancer, Inflammation, and Related Diseases. K.V. Honn, L. Marnett, S. Nigam, R. Jones, and P. Wong (ed.). Plenum Publishing Corp., New York, 1998, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, R.L., Tang, D.G. & Taylor, J.D. Actin cleavage in various tumor cells is not a critical requirement for executing apoptosis. Pathol. Oncol. Res. 4, 135–145 (1998). https://doi.org/10.1007/BF02904708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904708

Key words

Navigation