Skip to main content
Log in

Autointerference in silver accumulation in macrophages without affecting phagocytic, migratory or interferon-producing capacity

  • Published:
Virchows Archiv B

Summary

Silver accumulation and processing in mouse peritoneal macrophages was studied in vitro by autometallographic visualization of intracellular silver. During the first 24 h of incubation in a medium containing from 5 μM to 20 μM of silver lactate, an inverse relationship between silver concentration in the former and visualizable silver in macrophages was recorded. Later, however, the cells treated with higher silver concentrations accumulated most silver. Cells exposed to silver concentrations above these levels exhibited acute coagulation necrosis and disintegrated within the first 15 min of silver treatment. Macrophages treated with silver lactate concentrations not causing acute cytotoxicity showed no impairment of their phagocytic, migratory or interferon-producing capacities. The significance of autointerference in silver accumulation and processing in macrophages is discussed, and a functional defect in the lysosome/ phagosome system is suggested as a basis for the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castranova V, Bowman L, Miles PR, Reasor MJ (1980) Toxicity of metal ions to alveolar macrophages. Am J Industr Med 1:349–357

    Article  CAS  Google Scholar 

  • Cherian MG, Nordberg M (1983) Cellular adaptation in metal toxicology and metallothionein. Toxicology 28:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cook JA, Hoffmann EO, DiLuzio NR (1975) Influence of lead and cadmium on the susceptibility of rats to bacterial challenge. Proc Soc Exp Biol Med 150:741–747

    PubMed  CAS  Google Scholar 

  • Danscher G (1981) Light and electron microscopic localization of silver in biological tissue. Histochemistry 71:177–186

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1984) Autometallography. Histochemistry 81:331–335

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Rungby J (1986) Differentiation of histochemically visualized mercury and silver. Histochem J 18:109–114

    Article  PubMed  CAS  Google Scholar 

  • De Maeyer E, De Maeyer-Guignard J (1983) Delayed hypersensivitiy to Newcastle disease virus in high and low interferonproducing mice. J Immunol 130:2392–2396

    Google Scholar 

  • Diplock AT, Green J, Bungan J, McHale D, Muthy IR (1967) Vitamine E and stress. 3. The metabolism of D-α-tocopherol in the rat under dietary stress with silver. Br J Nutr 21:115–125

    Article  PubMed  CAS  Google Scholar 

  • Ellermann-Eriksen S, Justesen J, Mogensen SC (1986) Genetically determined difference in the antiviral action of α/β interferon in cells from mice resistant or susceptible to herpes simplex virus type 2. J Gen Virol 67:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Faith RE, Luster MI, Kimmel CA (1979) Effect of chronic developmental lead exposure on cell-mediated immune functions. Clin Exp Immunol 35:413–420

    PubMed  CAS  Google Scholar 

  • Fowler BA, Nordberg GF (1986) Silver. In: Friberg L, Nordberg GF, Veuk UB (eds) Handbook on the toxicology of metals. 2’nd edition. Elsevier, Amsterdam

    Google Scholar 

  • Fuchs U, Franz H (1971) Präparativ erzielte Silberanreicherung bei experimenteller Argyrose. Elektronmikroskopische Befunde. Exp Pathol 5:163–174

    CAS  Google Scholar 

  • Hemphill FE, Kaeberle ML, Buck WB (1971) Lead suppression of mouse resistance to salmonella typhimurium. Science 172:1031–1032

    Article  PubMed  CAS  Google Scholar 

  • James TH (1977) The theory of the photographic process. Macmillan, New York

    Google Scholar 

  • Kiremidjian-Schumacher L, Stotzky G, Likhite V, Schwartz J, Dickstein RA (1981) Influence of cadmium, lead and zinc on the ability of sensitized guinea pig lymphocytes to interact with specific antigen and to produce lymphokine. Environ Res 24:96–105

    Article  PubMed  CAS  Google Scholar 

  • Koller LD, Kovacic S (1974) Decreased antibody formation in mice exposed to lead. Nature 250:148–149

    Article  PubMed  CAS  Google Scholar 

  • Koller LD, Roan JG (1977) Effects of lead and cadmium on mouse peritoneal macrophages. J Reticuloendothel Soc 21:7–12

    PubMed  CAS  Google Scholar 

  • Leirskar J (1974) On the mechanism of cytotoxicity of silver and copper amalgams in a cell culture system. Scand J Dent Res 82:74–81

    PubMed  CAS  Google Scholar 

  • Loose LD, Silkworth JB, Simpson DW (1978) Influence of cadmium on the phagocytic and microbicidal activity of murine peritoneal macrophages, pulmonary alveolar macrophages and polymorphonuclear neutrophils. Infect Immun 22:378–381

    PubMed  CAS  Google Scholar 

  • Matuk Y (1983) Distribution of radioactive silver in the subcellular fraction of various tissues of the rat and its binding to low molecular weight proteins. Can J Physiol Pharmacol 61:1391–1395

    PubMed  CAS  Google Scholar 

  • Mogensen SC (1982) Macrophage migration inhibition as a correlate of cell-mediated immunity to herpes simplex virus type 2 in mice. Immunobiology 162:28–38

    PubMed  CAS  Google Scholar 

  • Pedersen EB, Haahr S, Mogensen SC (1983) X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production. Infect Immun 42:740–746

    PubMed  CAS  Google Scholar 

  • Petering HG (1976) Pharmacology and toxicology of heavy metals: Silver. Pharmacol Ther A 1:127–130

    CAS  Google Scholar 

  • Rungby J (1986) Exogenous silver in dorsal root ganglia, peripheral nerve, enteric ganglia, and adrenal medulla. Acta Neuropathol 69:45–53

    Article  PubMed  CAS  Google Scholar 

  • Rungby J, Danscher G (1983) Neuronal accumulation of silver in brains of progeny from argyric rats. Acta Neuropathol 61:258–262

    Article  PubMed  CAS  Google Scholar 

  • Rungby J, Hultman P, Ellermann-Eriksen S (1987) Silver affects viability and structure of cultured mouse peritoneal macrophages and perixodative capacity of whole mouse liver. Arch Toxicol (in press)

  • Selye H, Tuchweber B, Bertok L (1966) Effect of lead acetate on the susceptibility of rats to bacterial endotoxins. J Bacteriol 91:884–890

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hagashi Y, Ishizawa M (1983) Subcellular distribution and binding of heavy metals in the untreated liver of the squid, comparison with data from the livers of cadmium and silver exposed rats. Experientia 39:746–748

    Article  PubMed  CAS  Google Scholar 

  • Truscott RB (1970) Endotoxin studies in chicks: Effect of lead acetate. Can J Comp Med 34:134–137

    PubMed  CAS  Google Scholar 

  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull WHO 46:845–852

    Google Scholar 

  • Winge DR, Premakumar R, Rajagopalan KV (1975) Metalinduced formation of metallothionein in rat liver. Arch Biochem Biophys 170:242–252

    Article  PubMed  CAS  Google Scholar 

  • Zukoski CF, Chvapil M, Carlson E, Hauler B, Ludwig J (1974) Functional immobilization of peritoneal macrophages by zinc. J Reticuloendothel Soc 16:6a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellermann-Eriksen, S., Rungby, J. & Mogensen, S.C. Autointerference in silver accumulation in macrophages without affecting phagocytic, migratory or interferon-producing capacity. Virchows Archiv B Cell Pathol 53, 243–250 (1987). https://doi.org/10.1007/BF02890249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02890249

Key words

Navigation