Skip to main content
Log in

Inner core’s seismic anisotropy is related to its rotation

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

The inner core has a differential rotation relative to the crust and mantle, the relative linear velocity between the solid inner core and the molten outer core is the biggest at the equator and zero at pole area. As a result, the inner core grows faster at the equator than at the pole area. The gravitational force drives the material flow from the equator to the pole area and makes the inner core remain quasi-orbicular. The corresponding axial symmetric stress field makesc-axes of hexagonal close packed (hcp) iron align with inner core’s rotation axis, resulting in observed seismic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stixrude, L., Cohen, R. E., High-pressure elasticity of iron and anisotropy of earth’s inner core, Science, 1995, 267: 1972.

    Article  PubMed  CAS  Google Scholar 

  2. Sayers, C. M., The crystal structure of iron in the Earth’s inner core, Geophys. J. Int., 1990, 103: 285.

    Article  Google Scholar 

  3. Yoshida, S., Sumita, I., Kumazawa, M., Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy, J. Geophy. Res., 1996, 101(B12): 28085.

    Article  CAS  Google Scholar 

  4. Stixrude, L., Cohen, R. E., Constraints on the crystalline structure of the inner core: Mechanical instability of BCC iron at high pressure, Geophysical Res. Lett., 1995, 22(2): 125.

    Article  CAS  Google Scholar 

  5. Boehler, R., Bargen, N., Chopelas, A., Melting, thermal expansion, and phase transitions of iron at high pressures, J. Geophy. Res., 1990, 95(B13): 21731.

    Article  Google Scholar 

  6. Wenk, H-R., Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, New York: Academic Press, Inc., 1985, 220.

    Google Scholar 

  7. Song, X., Richards, P. G., Seismological evidence for differential rotation of the Earth’s inner core, Nature, 1996, 382: 221.

    Article  CAS  Google Scholar 

  8. Su, W., Dziewonski, A. M., Jeanloz, R., Planet within a planet: Rotation of the inner core of Earth, Science, 1996, 274: 1883.

    Article  PubMed  CAS  Google Scholar 

  9. Pamplin, B. R., Crystal Growth, London: Pergamon Press, 1981, 146.

    Google Scholar 

  10. Kamb, W. B., Theory of preferred crystal orientation developed by crystallization under stress, J. Geol., 1959, 67: 153.

    Article  Google Scholar 

  11. Kamb, W. B., The thermodynamic theory of nonhydrostatically stressed solids, J. Geophys. Res., 1961, 66: 259.

    Article  Google Scholar 

  12. Gubbins, D., Observational constraints on the generation process of the Earth’s magnetic field, Geophys. J., 1976, 47: 19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Liu, B., Zhang, Q., Wang, B. et al. Inner core’s seismic anisotropy is related to its rotation. Chin.Sci.Bull. 45, 751–753 (2000). https://doi.org/10.1007/BF02886184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886184

Keywords

Navigation